The remote sensing of insect defoliation in Mopane woodland.
Date
2013
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Mopane (Colophospermum mopane) woodlands are a source of valuable resources that
contribute substantially to rural economies and nutrition across Southern Africa. However, a
number of factors such as over-harvesting and climate change have brought the sustainability
of the mopane woodland resources into question. Insect defoliation remains a major factor
contributing to the depletion of woodland resources in rural areas resulting in low vitality and
productivity of the woodland. Conventional methods (e.g. visual evaluation) have been used
in monitoring insect defoliated areas in the past. These methods are costly and timeconsuming,
because of the need to collect data immediately before and after an extreme
event. In this regard, remote sensing techniques offer a practical and economical means of
quantifying woodland degradation over large areas. Remote sensing is capable of providing
rapid, relatively inexpensive, and near-real-time data that could be used for monitoring insect
defoliation especially in semi-arid areas where data collection may be difficult.
The present study advocates the development of techniques based on remotely sensed data to
detect and map defoliation levels in Mopane woodland. The first part of the study provides an
overview of remote sensing of insect defoliation, the implications for detecting and mapping
defoliation levels as well as the challenges and need for further research especially within
Mopane woodland.
Secondly, the study explored whether Mopane species can be discriminated from each of its
co-existing species using remote sensing. This was done as a prerequisite for classifying
defoliation on mopane trees. Results showed that, with limited training samples, especially in
semi-arid areas, Mopane trees can be reliably discriminated from its co-existing species using
machine learning algorithms and multispectral sensors with strategic bands located in sensors
such as RapidEye. These positive results prompted the need to test the use of ground based
hyperspectral data and machine learning algorithm in identifying key spectral bands to
discriminate different levels of insect defoliation. Results showed that the random forest
algorithm (RF) simplified the process and provided the best overall accuracies by identifying
eight spectral wavelengths, seven of which belongs to the red-edge region of electromagnetic
spectrum. Furthermore, we tested the importance of the red-edge region of a relatively
cheaper RapidEye imagery in discriminating the different levels of insect defoliation. Results
showed that the red-edge region played an important role in mapping defoliation levels
within Mopane woodland with NDVI-RE performing better than the traditional NDVI.
Thirdly, the study tested the reliability and strength of the internal validation technique of RF
in classifying different defoliation levels. It was observed that the bootstrapping internal
estimate of accuracy in RF was able to provide relatively lower error rates (0.2319) for
classifying a small dataset as compared to other validation techniques used in this study.
Moreover, it was observed that the errors produced by the internal validation methods of RF
algorithm was relatively stable based on the confidence intervals obtained compared to other
validation techniques.
Finally, in order to evaluate the effects of insect defoliation on the biophysical properties of
mopane canopies at different defoliation levels, the study estimated leaf area index (LAI) of
different defoliation levels based on simulated data. This was done using PROSAILH
radiative transfer model inverted with canopy spectral reflectance extracted from
RapidEyeRapidEye imagery by means of a look-up-table (LUT). It was observed that the
significant differences exist between the defoliation levels signifying reduction in the LAI as
a result of the defoliation. Furthermore, results showed that the estimated LAI was in the
range of those reported in literature. The NDVI-RE index was the most strongly correlated
with the estimated LAI as compared to other variables (RapidEye bands and NDVI).
Overall, the study demonstrated the potential of remote sensing techniques in discriminating
the state of Mopane woodland after insect defoliation. The results are important for
establishing an integrated strategy for managing defoliation processes within Mopane veldt,
thereby satisfying both the needs of local populations for Mopane trees and the worms.
Description
Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
Keywords
Defoliation--Remote sensing., Mopane tree--Remote sensing., Insect pests--Remote sensing., Theses--Environmental science