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ABSTRACT 

Mopane (Colophospermum mopane) woodlands are a source of valuable resources that 

contribute substantially to rural economies and nutrition across Southern Africa. However, a 

number of factors such as over-harvesting and climate change have brought the sustainability 

of the mopane woodland resources into question. Insect defoliation remains a major factor 

contributing to the depletion of woodland resources in rural areas resulting in low vitality and 

productivity of the woodland. Conventional methods (e.g. visual evaluation) have been used 

in monitoring insect defoliated areas in the past. These methods are costly and time-

consuming, because of the need to collect data immediately before and after an extreme 

event.  In this regard, remote sensing techniques offer a practical and economical means of 

quantifying woodland degradation over large areas. Remote sensing is capable of providing 

rapid, relatively inexpensive, and near-real-time data that could be used for monitoring insect 

defoliation especially in semi-arid areas where data collection may be difficult. 

The present study advocates the development of techniques based on remotely sensed data to 

detect and map defoliation levels in Mopane woodland. The first part of the study provides an 

overview of remote sensing of insect defoliation, the implications for detecting and mapping 

defoliation levels as well as the challenges and need for further research especially within 

Mopane woodland.  

Secondly, the study explored whether Mopane species can be discriminated from each of its 

co-existing species using remote sensing. This was done as a prerequisite for classifying 

defoliation on mopane trees. Results showed that, with limited training samples, especially in 

semi-arid areas, Mopane trees can be reliably discriminated from its co-existing species using 

machine learning algorithms and multispectral sensors with strategic bands located in sensors 

such as RapidEye. These positive results prompted the need to test the use of ground based 

hyperspectral data and machine learning algorithm in identifying key spectral bands to 

discriminate different levels of insect defoliation. Results showed that the random forest 

algorithm (RF) simplified the process and provided the best overall accuracies by identifying 

eight spectral wavelengths, seven of which belongs to the red-edge region of electromagnetic 

spectrum. Furthermore, we tested the importance of the red-edge region of a relatively 

cheaper RapidEye imagery in discriminating the different levels of insect defoliation. Results 

showed that the red-edge region played an important role in mapping defoliation levels 

within Mopane woodland with NDVI-RE performing better than the traditional NDVI.  
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Thirdly, the study tested the reliability and strength of the internal validation technique of RF 

in classifying different defoliation levels. It was observed that the bootstrapping internal 

estimate of accuracy in RF was able to provide relatively lower error rates (0.2319) for 

classifying a small dataset as compared to other validation techniques used in this study. 

Moreover, it was observed that the errors produced by the internal validation methods of RF 

algorithm was relatively stable based on the  confidence intervals obtained compared to other 

validation techniques. 

Finally, in order to evaluate the effects of insect defoliation on the biophysical properties of 

mopane canopies at different defoliation levels, the study estimated leaf area index (LAI) of 

different defoliation levels based on simulated data. This was done using PROSAILH 

radiative transfer model inverted with canopy spectral reflectance extracted from 

RapidEyeRapidEye imagery by means of a look-up-table (LUT). It was observed that the 

significant differences exist between the defoliation levels signifying reduction in the LAI as 

a result of the defoliation. Furthermore, results showed that the estimated LAI was in the 

range of those reported in literature. The NDVI-RE index was the most strongly correlated 

with the estimated LAI as compared to other variables (RapidEye bands and NDVI). 

Overall, the study demonstrated the potential of remote sensing techniques in discriminating 

the state of Mopane woodland after insect defoliation. The results are important for 

establishing an integrated strategy for managing defoliation processes within Mopane veldt, 

thereby satisfying both the needs of local populations for Mopane trees and the worms.    
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1.1. Mopane (Colophospermum mopane) Woodlands in Southern Africa 

Mopane woodlands are a source of valuable resources that contribute substantially to rural 

economies and nutrition across Southern Africa (Hrabar et al., 2009a). The woodland provide 

varied products that include construction and fence poles, wood for tools hands, carvings and 

utensils, firewood, rope, gum, tannin, medicines and resin, green manure, livestock browse and 

edible caterpillars (commonly referred to as mopane worms) (Mojeremane and Kgathi, 2005). 

Mopane woodland is widely distributed in Southern Africa (Fig 1.1). It can be found in Angola, 

Botswana, Malawi, Mozambique, Namibia, South Africa and Zimbabwe (Makhado et al., 2012; 

Stack et al., 2003) accounting for about 550,000km
2
 in total area of southern Africa (Wessels et 

al., 2007). Specifically, mopane woodland occurs in northern Namibia; the Caprivi strip; north-

eastern Botswana; north; south and west of Zimbabwe; southern parts of Malawi; southern and 

Central Mozambique; southern Angola and parts of the Northern and Mpumalanga Provinces of 

South Africa (Mapaure, 1994).  

The value of mopane woodland in Botswana alone has been estimated at £1.99 million per 

annum while in South Africa, the mopane veldt is worth £57 million, of which approximately 

40% goes to producers who are primarily poor rural women (Stack et al., 2003).  

Colophospermum (C) mopane  is the dominant tree species in mopane woodlands (Lẻonard, 

1949). C. mopane is commonly known as mopane and is considered as one of the most important 

tree species in the mopane woodlands. However, several other tree species grow in association 

with mopane trees. The resource which is extensively utilized in mopane woodland is mopane 

worms. Mopane worms are extensively consumed by the rural and increasing urban populations 

across southern African countries for their nutritional value, and also sold to generate income. 

Mopane woodland also provides nutritious fodder for browsers, particularly in the dry season 

(Timberlake, 1996). Its leaves form an important source of crude protein and are preferred by 

browsers during winter when the tannins have leached-out (Hrabar et al., 2009a). The grasses 

under C. mopane tree are quite nutritious and are highly palatable for grazing animals. 

Recent studies have however showed that the long term sustainability of the woodland and its 

resources are under threat (Adelabu et al., 2012; Ditlhogo et al., 1996). A number of studies have 

been carried out on different management prospects of mopane woodland in Southern Africa  

(Mojeremane and Kgathi, 2005; Timberlake, 1996), however,  only a few have studied the 

impacts of mopane worms on their host (Ditlhogo et al., 1996; Hrabar et al., 2009a). Moreover, 
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the extent of this defoliation is still relatively unknown. In this regard, further work is needed to 

fully quantify the influence of the worms on its host, especially the defoliation process, given the 

availability of emerging specialized technology.  
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Figure 1. 1: Description of Study Area
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1.2. Understanding Defoliation Process in Mopane Woodland  

The most significant defoliator within the mopane woodland is the mopane worm. Details of 

what transpires between undefoliated mopane leaves and the worms leading to defoliation are 

still very sketchy. It is believed that mopane tree defoliation follows the same pattern as other 

insect defoliators and when the outbreak occurs, about 200 mopane worms feed on a single 

mopane leaf leading to 90% of mopane trees if not all, left without leaves within a mopane 

woodland (Ditlhogo et al., 1996). Moreover, Stack et al. (2003) observed that mopane trees do 

not contain any hydrolysable tannin which is widely accepted as being the primary defence 

compounds against insects. This explains the close association between mopane worms and 

mopane trees. While mopane woodland often recover within a relatively short period after 

defoliation with little mortality, continuous defoliation may lead to deplorable long term effects 

that may be fatal. 

 Although, no report of eradication of mopane trees as a result of defoliation in any region of 

mopane veldt is known yet, studies have proved that there are long term effects. Hrabar et al. 

(2009a) noted that at present, defoliation have no effect on mopane plant size. However, the 

defoliation processes have a potential negative effect on stored resources which characteristically 

result in regrowth with smaller and or fewer leaves. Styles and Skinner (2000) further explained 

that heavily defoliated mopane trees tend to lose nutrient content and greatly reduced in size over 

years. Furthermore, the absence of mopane worms from certain regions of mopane veldt has not 

been satisfactorily explained. It may be due to the absence of necessary nutrients that attract the 

worms to the leaves of the tree. The defoliation process as a result of the worms, if not well 

managed can lead to the extinction of the tree and hence the worms within the region. Few of the 

studies on mopane woodland management have included defoliation process in their agenda 

(Ditlhogo et al., 1996; Hrabar et al., 2009a) due to complexity of the defoliation, lack of 

understanding, unavailability of instruments and methods in quantifying and the perceived non 

importance of defoliation in the management of mopane woodland. Moreover, most of these 

studies were carried out using field experiments which have been found to be time consuming 

and costly.  
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1.3. Remote Sensing of Mopane Woodland Defoliation 

For remote sensing to be effective and accurate in detecting and mapping mopane woodland 

defoliation, a sound understanding of the distribution, ecology, and life cycle of both the tree and 

the worm is required. Knowledge of these defoliation processes facilitates the development of 

algorithms to detect changes in foliar characteristics using remotely sensed data. Consequently, 

the challenge would be to assess the defoliation process, and then associate each level of 

observation with different remote sensing data types in order to provide the appropriate level of 

detail and accuracy for detection and mapping purposes. 

1.3.1. The Mopane Tree (Colophospermum mopane) 

Mopane tree is a monotypic genus which belongs to Fabaceae (legume) family. The species was 

formerly placed in the genus Copaifera L. with the genus Colophospermum being created by 

Léonard in 1949 (Lẻonard, 1949). It can also  be categorized into the casalpinioidae subfamily, 

which are leguminous plants mostly with leaflets like butterfly wings (Palgrave, 1983). 

Colophospermum mopane is known locally by a number of common names such as butterfly tree 

as it serves as host for edible mopane worm (Imbrasia belina). 

1.3.1.1.  Tree Phenology and Ecology 

Colophospermum mopane is a tree or shrub with a heavy rounded but occasionally erect narrow 

crown (Sebego et al., 2008). Most mopane trees are multi-stemmed and spread upward in a 

narrow V-shape (Musvoto et al., 2007) and the bole can reach about 40cm but occasionally very 

big (Palgrave, 1983). Mopane trees differ in growth form depending on the local ecological 

conditions that vary from dwarf (very old and stunted tree less than 2.5m high) to cathedral 

mopane, which may reach heights of 18-20m. The leaves are pinnate with two large butterfly-

like leaflets that may vary considerably in size on the same tree (Mojeremane and Kgathi, 2005) 

and within a growing season (Mapaure, 1994).  C. mopane drops its leaves irregularly from the 

onset of the dry season but defoliation usually follows the trends of worm consumption and is 

generally leafless from August to October. However, trees may retain their leaves between 

successive rainy seasons, depending on the amount and distribution of rainfall (Wessels et al., 

2007).  

1.3.2.  The Worm (Imbrasia belina) 

Imbrasia belina (Westwood), the mopane worm or Anomalous Emperor Moth, is a saturniid 

lepidopteran which is widely distributed throughout southern, Central and east Africa. Its 
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distribution in Southern Africa is in line with the mopane tree which serves as its host extending 

from the Northern parts of South Africa into Zimbabwe and Botswana, and west into Namibia 

(Mapaure, 1994). I. belina feeds on a number of tree species but C. mopane is the most suitable 

host in terms of developmental periods, number of emerged adults and nutritional quality 

(Hrabar et al., 2009a).  

1.3.2.1.  Life Cycle 

According to Paulick (2003), I belina is bivoltine (produces two generation within a season) 

across most of its distribution with one group coming out between November and December and 

the other between March and April. However, univoltine season has also been observed in areas 

that is extremely arid (Ditlhogo et al., 1996). A solitary 50 to 200 clusters of eggs are usually 

laid by adult moths over a period of approximately two month (Fig 1.2).  Pupation only takes 

place after 10days when the larva has already emerged and it has passed through five more 

stages. Paulick (2003) observed that the caterpillars usually feed together in phases 1 to 3. Phase 

1 involve the worms feeding on the mopane leaves in order to grow bigger and store energy. At 

this stage, it is believed that the worms body mass will increase by an approximately 4000 fold. 

After this phase, the worm moves down the tree into the soil making hole in the ground. At the 

pupa phase, the worm spends approximately six months in the ground. The final phase occurs at 

the beginning of the summer when its main function is to mate and die within two – three days 

(Hrabar et al., 2009b). 
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Figure 1. 2: Life cycle of the mopane worm modified from Paulick (2003) 

1.3.2.2.  Population Ecology 

Currently, there is no sufficient evidence to establish the population dynamics of I. belina 

(Greyling et al., 2001) but researchers have considerably linked it to the outbreak dynamics 

similar to those known species of woodland lepidopteron in the Northern Hemisphere.  Greyling 

et al. (2001) found that I. belina conforms to the picture of a 'typical' outbreak lepidopteron 

closely that is, it lays eggs in masses, and have large, brightly coloured larvae which start feeding 

early in the season and which are reasonably polyphagous.   

1.3.3. Implication of Remote Sensing for Detecting Defoliation Levels in Mopane 

Woodland 

Having understood the ecology of mopane tree and the worms that feed on it, the major focus 

will then be on how applicable remote sensing is for defoliation monitoring in mopane 

woodland. Currently, mopane woodland defoliation is mapped and monitored based on field 
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observations (Hrabar et al., 2009a). The results from this is however debatable as field 

observations are known to be dependent on the proficiency of the observer and hence subjective 

(Coops et al., 2004). However, monitoring of forest health using remote sensing has been given 

great attention in recent years with diverse range of imageries and modeling techniques (Coops 

et al., 2004; Pontius et al., 2005; Radeloff et al., 1999). The advantages of applying remote 

sensing for monitoring insect defoliation includes the ability to acquire relatively cheap and rapid 

methods of acquiring up to date information over a large geographical area (de Beurs and 

Townsend, 2008). Also, remote sensing has an edge over other methods because it offer an 

effective way to acquire data from remote areas and also provides spectral information in the 

form of individual bands, combination of bands and relevant vegetation indices that could be 

used for monitoring forest health (Hall et al., 2007; Rullan-Silva et al., 2013; Townsend et al., 

2004). To date, no studies have used remote sensing for the detection, mapping and monitoring 

of insect defoliation in mopane woodland. Nonetheless, there are factors needed to be considered 

before remote sensing can be used for monitoring insect defoliation in mopane woodland. 

Firstly, three stages of defoliation could be observed in mopane woodland. These are the 

undefoliated, partly defoliated and refoliating stages of defoliation. The time series of defoliation 

in mopane woodland is represented by its canopy impacts. While the non-impacted undefoliated 

canopies (UD) represents time before defoliation, the partly defoliated (PD) and refoliating (R) 

canopies represent during and after defoliation respectively. During the early stages of 

defoliation in mopane woodland (when the worms are feeding on the tree), the canopy of the tree 

appears green and cannot be visually differentiated from the healthy trees (Ciesla, 2003). Leaves 

become pale green gradually leading to total defoliation. At this stage, discriminating the 

defoliated part of the tree using remote sensing is dependent on detecting the little changes that 

might have occurred in the spectral reflectance of the tree. However, this challenge in defoliation 

process of mopane woodland could potentially be reduced through the use of hyperspectral data 

because of the presence of continuous narrow bands that offer in-depth information which cannot 

be visually identified and will have been masked by broadband scanners. (Kumar et al., 2001; 

Mutanga and Skidmore, 2004a; Mutanga et al., 2009). In addition, the time period of defoliation 

in mopane woodland is relatively short (2-3weeks), hence the period of detection by remote 

sensing will be restricted. Thus analyzing images of outbreaks may be challenging as changes in 

canopy characteristics may not be easily detected. To this end, remote sensing sensors that 
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incorporate the period of defoliation (i.e. short temporal resolution) and also spectrally capable 

of quick detection of subtle changes in canopy reflectance are needed. 

Nevertheless, the focus of the present thesis was limited to hyperspectral data captured in the 

field due to cost and availability of airborne hyperspectral imagery. Furthermore, the study 

investigates the potential of down-scaling the hyperspectral data to readily available 

multispectral image in classifying the defoliation levels. Although hyperspectral data could 

potentially be used for discriminating the defoliation levels, it has been observed to be difficult in 

processing as compared to multispectral data due to geometrical and statistical properties 

associated with high dimensional data (Ismail and Mutanga, 2011). The challenge would 

therefore be to develop and test robust methods and techniques such as random forest and 

support vector machine for the effective processing and classification of hyperspectral data for 

defoliation monitoring. The use of random forest and support vector for classifying insect 

defoliation is expected to limit the errors that is usually obtained from traditional classifiers such 

as maximum likelihood.  Additionally, multispectral imagery with strategic band could assist 

where hyperspectral data are not available. Likewise, the study test the capability of leaf area 

index derived from radiative transfer model in distinguishing the different defoliation levels in 

the woodland. The knowledge of biophysical variables such as LAI may help to understand the 

influence of the insects on the canopy at each of the defoliation levels. Radiative transfer model 

approach for estimating LAI will further help in generating LAI data as data collection becomes 

more and more difficult to collect especially in developing world (Weiss et al., 2000). 

1.4. Aim 

From the observations above, the main aim of the study was to classify and monitor the 

defoliation levels of Mopane trees (Colophospermum mopane) by Mopane worms (Imbrasia 

belina) in Eastern Botswana using remote sensing data. 

1.5.  Research Objectives 

The main objectives of the study was to  

1. Review the different approaches including the remote sensing platforms and techniques 

that have been used for assessing insect defoliation and their implications for detecting 
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and monitoring mopane worm defoliation of mopane woodland highlighting their 

strengths and weakness. 

2. Discriminate Colophospermum mopane and its co-existing species in a semi-arid forest 

using spectral information provided by new multispectral sensors together with 

advanced classification algorithms. 

3. Discriminate the levels of change in forest canopy cover detectable after insect 

defoliation by ground based hyperspectral measurements in mopane woodland. 

4. Explore and evaluate the benefit of the RapidEye red edge channel for discriminating 

different levels of insect defoliation in mopane woodland. 

5. Test the reliability and robustness of the internal accuracy estimate in random forest 

(RF) ensemble classifier in discriminating different levels of insect defoliation in 

mopane woodland. 

6. Quantify the impact of insect defoliation on the leaf area index of mopane canopies by 

estimating leaf area index at different defoliation levels using radiative transfer model. 

1.6. Description of Study Area 

The study was based in the eastern part of Central District of Botswana. The approximate 

location of the study area is between 27
◦
E and 27

◦
33`E and 22

◦
23`S and 22

◦
52`S.  The study area 

is located at about 230km north of Gaborone (the capital city) and approximately 70km north of 

the tropics of Capricorn. The study area include a number of small villages and a major centre, 

Palapye (Fig 1.1) that was of importance for this study for logistical purposes as well as being a 

trading place for commercial, agricultural and veld products such as mopane worms. The area 

immediately west of Palapye forms a transition zone into the Kalahari, and it is locally known as 

the Sandveld (Sebego et al., 2008). Some few kilometres south of Palapye lies the most southerly 

area where the mopane species can be found in its natural environment. The selection of this area 

was based on two major reasons: firstly, it is an area with typical pockets of mopane woodland 

where the species is found in all its various growth forms (tree, tall shrubs and short shrubs). 

Secondly, 2km north of Radisele lies the southern limit of mopane in Botswana (the other part 

being in the northern province of South Africa). This area is anticipated as appropriate for 

investigations on the environmental factors limiting the distribution of mopane. According to 

Botswana’s department of meteorological services, summer months are from mid-September to 

mid-April. Summers are very hot in Palapye, with daytime temperatures reaching up to 40°C. 
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Thunderstorms are plentiful in the summer. Rainfall levels are usually a minimum of 300mm 

annually. Winters in Palapye are mild and dry. 

1.7. Thesis Outline 

In order to achieve the objectives of this study, the thesis is organized as compilation of 6 

research articles that have been submitted to peer reviewed international Journals. Of these, three 

have already been published; two are still in review while one is in preparation. Each chapter has 

been written as a stand-alone article that can be read independently from the rest of the thesis but 

that draws conclusion which is linked to the overall research objective. Consequently, a number 

of replications and overlaps crop up in the “Introduction” and “Methods” section of different 

chapters. The thesis consists of 8 Chapters: 

Chapter 1 serves as an introduction to the study. 

Chapter 2 contains a detailed literature review of the current state of insect defoliation mapping 

and monitoring using remote sensing. It also highlights the relevant application of remote 

sensing in mapping insect defoliation in mopane woodlands. The research gaps and challenges in 

the application of remote sensing in insect defoliation mapping are also introduced. In order to be 

able to classify insect defoliation levels in mopane woodland, there is need to be able to 

discriminate mopane trees from other tree species present in the woodland. Chapter 3 therefore 

contains an investigation into the ability of new generation RapidEye image to discriminate 

between mopane trees and its co-existing species. Furthermore, the capabilities of relatively new 

machine leaning classifiers (RF and SVM) were compared for tree species classification in a 

semi-arid environment with limited training samples.  

In chapter 4, we tested the ability of ground based hyperspectral data in discriminating different 

insect defoliation levels. The chapter determines if there is any significant difference in the mean 

reflectance between the different defoliation levels at each measured wavelength from 325nm to 

1075nm. For the wavelengths that are significantly different (p < 0.001), it was tested whether 

some wavelengths have more discriminating power than others and which wavelength 

combinations can yield the lowest misclassification rate.  

Chapter 5 investigates the potential of downscaling the sensors used in Chapter 4 to cheaper and 

readily available new generation sensors such as RapidEye in classifying the insect defoliation 
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levels in mopane woodland. Specifically, the study examined the importance of the new red-edge 

band present in RapidEye image in classifying insect defoliation levels using two different 

machine learning algorithms. Chapter 6 is based on testing the robustness of internal accuracy 

estimate of one of the classifier used for classification in Chapter 4 and Chapter 5 for insect 

defoliation mapping. 

In Chapter 7, LAI of insect defoliated canopy were estimated using radiative transfer models to 

understand the impacts of defoliation on LAI. 

Finally, a synthesis of the study is provided in Chapter 8. The findings are summarized and 

conclusions are derived from the preceding chapters. Some relevant recommendations for future 

research on the applications of remote sensing for insect defoliation mapping are highlighted. A 

single reference list is provided at the end of the thesis. 

 

 

 

 

 

 

 

 

 

 



14 
 

CHAPTER TWO 
 

Literature Review 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

S. Adelabu, O. Mutanga, and M. A. Cho, “A review of remote sensing of insect defoliation and 

its implications for the detection and mapping of Imbrasia belina defoliation of mopane 
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ABSTRACT 

Forest health, especially insect defoliation monitoring using direct sampling and visual 

estimation has been only moderately successful due to its cost, time required for sampling, and 

most importantly the need to collect data immediately before and after an extreme event. 

However, remote sensing techniques offer timely, up-to-date, and relatively accurate information 

for sustainable and effective management of forest health. In this paper, we discuss the different 

approaches including the remote sensing platforms and techniques that have been used for 

assessing insect defoliation and its implications for detecting and monitoring mopane worm 

defoliation of mopane woodland, highlighting their strengths and weakness. Research gaps in the 

detection of insect defoliation with remote sensing are highlighted and future directions of 

research are also proposed. 

 

Keywords: forest health, mopane worm, multispectral, hyperspectral, chlorophyll content 
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2.1 Introduction 

An important component of forest ecosystem is its health status and the impact it has on 

sustainable growth. Recent evidence suggests that new damaging agents are appearing at an 

increasing rate which could affect the future sustainability of forest industries (Wulder and 

Franklin, 2003). While many of the past impacts of damaging agents such as insects on forest 

woodland have been disastrous, mopane worm, an important defoliator of mopane woodland in 

Southern Africa exhibit a different scenario. As a result, Imbrasia belina (mopane worm) is 

widely distributed and consumed in Southern Africa because of its nutritional values and sold to 

generate income (Timberlake, 1996). 

However, while the depletion of worms derived from mopane woodland have been reported 

in different areas, none of these depletions have been attributed to the impacts of the worms on 

the vitality and productivity of their host. Mopane tree defoliation is one of the serious impacts 

of the worm on its host. Furthermore, the absence of mopane worms from certain regions of 

mopane veldt has not been satisfactorily explained. It may be due to the absence of necessary 

nutrients that attract the worms to the leaves of the tree. Defoliation process as a result of the 

worms if not well managed can in the long run lead to the extinction of the tree and hence the 

worms within the region. In an effort to minimize the potential loss of I. belina (hereafter 

referred to as mopane worm) in mopane woodland of Southern Africa, an integrated 

management strategy is needed combining detection, mapping and monitoring methods. 

Moreover, resource managers need to know the impacts, vulnerability and suggest possible 

management practices that will enable efficient and sustainable use of the resources emanating 

from mopane woodland. 

Information on the extent and severity of mopane defoliation is required for a wide variety of 

forest planning, management, and modeling activities. Mapping mopane defoliation will also aid 

sketch mapping surveys and also help in reporting and assessing the impacts of the defoliation on 

the health and productivity of the woodland. Currently, there are no specific methods of mapping 

mopane defoliation. 

The objective of this paper therefore is to discuss the different approaches including the 

remote sensing platforms and techniques that have been used for assessing insect defoliation and 

its implications for detecting and monitoring mopane worm defoliation of mopane woodland 
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highlighting their strengths and weakness. Firstly, we review the effects of insect defoliation on 

trees and the conventional ways in which they are assessed. Thereafter we consider different 

remote sensing platforms that have been used in detecting insect defoliation, highlighting the 

strengths and weaknesses in detecting, mapping and monitoring mopane woodland defoliation. 

Thirdly, the remote sensing techniques that can be used for accurate monitoring are presented. 

Finally, we discuss various challenges that might occur while using remote sensing to detect, 

map and monitor defoliation in mopane woodland by mopane worms, suggesting possible 

solutions to them. 

2.2 Effects of Insect-Caused Tree Defoliation on Vegetation Productivity 

The primary function of leaves in plants is to manufacture sugars and carbohydrates (Morgan et 

al., 2010). Sugars and carbohydrates are the basic food or energy that plants use for all metabolic 

activities such as growth, root development, flower and seed production, disease resistance. 

Leaves also provide many indirect benefits such as emitting oxygen, screening out particulates 

and other air pollutants, intercepting precipitation to minimize erosion and shading the ground to 

modify surface temperatures (Morgan et al., 2010). When insect defoliation occurs in a particular 

tree, the effects range from a slight reduction in vigor to total death (Hall et al., 2003a). Insect 

defoliation harms plants by eliminating or limiting their food production capability (Hall et al., 

2003a). The refoliation process, which frequently occurs immediately after defoliation, also 

requires energy for budbreak and leaf expansion, which causes further depletion of stored food 

reserves (Hall et al., 2003a). 

The inability of the tree to manufacture food (energy) together with the depletion of stored 

food weakens the tree and results in reduced growth, stunted, pale-green new leaves and possibly 

twigs and branch dieback (Kantola et al., 2010). Insect defoliation also affects the morphological 

and physiological characteristics of trees, and it is these characteristics that govern how trees 

absorb and reflect light (Hall et al., 2003a). The production of protective substances that aid in 

disease resistance may be inhibited (Hall et al., 2003a). It is predicted that the frequency and 

severity of insect defoliation outbreaks could increase in response to climatic warming, further 

magnifying their effects (Fraser and Latifovic, 2005). 

Mopane tree defoliation follows the same pattern as other insect defoliators and when the 

outbreak occurs, about 200 mopane worms feed on a single tree leading to 90% of mopane trees 
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if not all left without leaves within a mopane woodland (Ditlhogo et al., 1996). Moreover,Stack 

et al. (2003) observed that mopane trees do not contain any hydrolysable tannin which is widely 

regarded as the primary defence compounds against insects. This explains the close association 

between mopane worms and mopane trees. While mopane woodland often recover within a 

relatively short period after defoliation with little mortality, continuous defoliation may lead to 

deplorable long term effect that may be fatal. 

Although, no report of eradication of mopane trees as a result of defoliation in any region of 

mopane veldt is known yet, studies have proved that there are long term effects. Hrabar et al. 

(2009b) noted that at present, defoliation has no effect on mopane plant size, however, it has 

potential negative effects on stored resources which characteristically result in regrowth with 

smaller and or fewer leaves. Styles and Skinner (2000) further explained that heavily defoliated 

mopane trees tend to lose nutrient and greatly reduce in age over years. Having discussed the 

(possible) effects of mopane worm defoliation on mopane woodland, it is important to highlight 

the linkage between (biophysical and biochemical) indicators of mopane woodland productivity 

and remote sensing. Knowledge of this will help accurate detection of defoliation level within 

the woodland. 

2.3 Conventional Methods of Assessing and Monitoring of Insect-Caused Tree 

Defoliation 

Defoliation is a general stress response, and it is closely linked to biophysical and biochemical 

indicators hence they are used as conventional methods of detecting insect defoliation (Lee et al., 

2010). Measuring forest biophysical characteristics aims at documenting forest integrity in many 

aspects, such as structural, functional and species diversity (Kumar et al., 2001). However, these 

measurements often depend on extensive and expensive fieldwork, encompassing a restricted 

study area. Remote sensing enables monitoring studies in a wide area at constant time periods 

(Seidl et al., 2011). 

The alliance between remote sensing techniques and biophysical indicators could be valuable 

to studies on detecting, mapping and monitoring defoliation process in forests. To fully 

understand how remote sensing can be used for detecting, mapping and monitoring insect 

defoliation especially the mopane woodland defoliation, we need to discuss the biophysical and 

biochemical variables that affect mopane trees focusing on the two main ones: Leaf Area Index 
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(LAI) and chlorophyll content. Understanding these biophysical indicators could help in 

providing more information on the techniques and platforms of remote sensing that can be 

applied. 

2.3.1 Leaf Area Index 

The use of biophysical change metrics, such as LAI change, has been proved to provide a more 

flexible and general defoliation mapping method (Hall et al., 2003a). Moreover researchers have 

stated that insect defoliation thresholds that are based on LAI rather than percent defoliation are 

more meaningful (Malone, 2001). LAI is an important variable explaining canopy primary 

production and can be used to infer processes such as photosynthesis, transpiration, 

evapotranspiration and estimate net primary production (NPP) of terrestrial ecosystems (Yao et 

al., 2008). LAI is defined as one-half the total surface area of leaves per unit ground area. The 

estimation of LAI from remote sensing measurements has received much attention. For example, 

a simplified semi-empirical reflectance model for estimating LAI of a green canopy was 

introduced by (Clevers, 1997). The widely used crown condition variables are closely related to 

LAI, but this has received little attention. As such, LAI is increasingly desired as a spatial data 

layer (i.e., map), to be used as input for modeling biogeochemical (Thenkabail et al., 2000).  

The LAI measurements are relevant for comparing the condition of differently damaged 

stands and can therefore be used in forest monitoring practice (Thenkabail et al., 2000). 

Measuring LAI on the ground is difficult and requires a great amount of labor and cost (Kumar 

et al., 2001). To produce a LAI map of a large area, a model relating field data with remote 

sensing data is typically developed, the model is inverted, and the remote sensing data are then 

used to extrapolate that relationship to the landscape (Hall et al., 2003a). Many studies have 

sought to establish relationships between LAI and remote sensing data (Kumar et al., 2001; 

Thenkabail et al., 2000; Yao et al., 2008). Most of these studies have relied on empirical 

relationships between the ground-measured LAI and observed spectral responses, although 

several have used canopy reflectance models (Kumar et al., 2001; Thenkabail et al., 2000). 

Although, LAI has not been used in detecting and mapping the forest health levels of mopane 

woodland, especially during mopane defoliation, it is hypothesized that data from LAI could 

evaluate the vegetation levels before, during and after defoliation. When forest health 

deteriorates and the deterioration is affecting canopy volume it would be detected as LAI change. 



20 
 

Therefore, the healthier the vegetation, the higher the LAI, since LAI increases with healthy 

status of plants (Sanz-Cortiella et al., 2011). Hence, a forest that is highly defoliated is expected 

to have low LAI. LAI during the healthy state of mopane woodland (without defoliation) is 

expected to be high since its canopies at this stage are still very green and have not been attacked 

by the worms. However it may be difficult to differentiate the early defoliation stage of mopane 

woodland from the healthy state using LAI since the canopy at this stage is visually 

indistinguishable from healthy trees of the green stage (Ismail et al., 2008). Combination of LAI 

as well as the variation in biochemical concentration in leaves could help in dissociating this 

level. On the basis of the above discussion, measurement of LAI can help develop a background 

to which remote sensing techniques could be applied for detecting, mapping and monitoring 

defoliation process in mopane woodland. 

2.3.2 Chlorophyll Content 

Chlorophyll (Chl) content is another biophysical variable for detecting insect defoliation on 

forest (Thomas et al., 2008). Chl content is a good indicator of vegetation status and gross 

primary productivity because of its direct role in photosynthesis (Gitelson et al., 2006). Results 

in the past have showed that Chl content was much lower in woodlands that have insect 

defoliation when compared with healthy woodland (Gitelson et al., 2002). When forests are 

subjected to insect defoliation, many physiological changes occur, including: reductions in 

photosynthetic activity (Zarco-Tejada et al., 2000), inhibition of Chl formation (Sims and 

Gamon, 2002), and an increasing breakdown of the chlorophyll molecule (Gitelson et al., 2006). 

Efficient field measurements of these Chl related changes have been approximated using 

measures of Chl fluorescence (a measure of photosynthetic activity (Zarco-Tejada et al., 2000). 

However, this has been costly and time consuming. Recently, a relatively cheaper and less 

time consuming approach of detecting defoliation using Chl content over large areas involves 

remote sensing technology (Thomas et al., 2008). Narrow wavebands near 700 nm where 

changes in Chl absorption are easily detectable have been recommended for early detection of 

forest damage (Pontius et al., 2005). 

The Chl in green leaves absorbs light for photosynthesis at wavelengths from 650–660 nm 

(Thomas et al., 2008). For this reason, the red region of the spectrum is most useful for detecting 

the absorption of visible light by the Chl pigments. The healthiest vegetation will perform 
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photosynthesis efficiently, which requires an abundance of Chl pigments. The healthiest 

vegetation, hence, will absorb the greatest amount of red light. Most of the infrared light incident 

on a green leaf is reflected at wavelengths from 0.7–1.2μm due to leaf internal scattering. The 

near-infrared region of the spectrum is most useful for detecting the reflection of infrared light 

by the leaves (Pontius et al., 2005). The healthiest vegetation will have many leaves and will, 

therefore, reflect the greatest amount of near-infrared light. Hence, healthy vegetation is highly 

reflective in the near infrared region and highly absorbent in the red region. 

Also narrow-band hyperspectral instruments have the capability to identify early signs of 

defoliation in some cases even when symptoms are not visible to the human eye (Mohammed et 

al., 1995; Pontius et al., 2005; Zarco-Tejada et al., 2000). Physiologically, this can be explained 

by the tendency of defoliated forest to reduce photosynthetic activity and hence Chl content. 

Even subtle changes in Chl content can alter reflectance patterns in the visible and near-infrared 

(NIR) portions of the spectrum (Pontius et al., 2005). 

While Chl content can be measured directly using Chl meter such as Minolta SPAD-502 

(Konica Minolta, Osaka, Japan), most studies using Chl content in monitoring defoliation make 

use of models that are derived from empirical relationships between the ground-measured Chl 

content and observed remote sensing variables. Moreover, with high forest canopy cover such as 

mopane woodland, relationships between the reflected electromagnetic radiation and leaf 

chemistry tend to break down (Pontius et al., 2005). However, Chl content derived from 

hyperspectral remote sensors may be a good indicator of defoliation at the green stage of 

defoliated mopane woodland since the photosynthesis activities at this stage is relatively higher 

than when they are totally defoliated. It must however be noted that although Chl content is 

dependent on other factors such as drought, pest infestations and diseases, mopane woodland 

insect defoliation will be different in that defoliation follows good-healthy growth patterns that 

would otherwise not occur if there was a severe drought pest or diseases infestation. Moreover, 

insect defoliation occurs in patches (within the healthy forests) but drought or pest or diseases 

infestation would impact on all vegetation. 

Changes in Chl content and LAI have been related to variation in photosynthetic activities of 

deciduous trees (Koike, 1987). Although they (LAI and Chl content) are not direct measurements 

of vegetation productivity and physiological activities, they represent important determinants of 
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productivity and physiological capacity of plants (Sims and Gamon, 2002). Infact, relationship 

between the two can actually provide information on the health status of a particular tree (Kodani 

et al., 2002). It is expected that the knowledge about the dynamics will establish the impact of 

defoliation on the tree. 

2.4 Relevance of Remote Sensing in Assessing and Monitoring Insect-Induced Tree 

Defoliation 

The most reliable method of measuring defoliation is by direct sampling (ground based 

measurement), which is obviously unreasonable because of its cost, time required for sampling, 

and most importantly the need to collect data immediately before and after an extreme event (de 

Beurs and Townsend, 2008). For large areas, aerial survey is more efficient than ground based 

measurement. However, ground based estimates provide better tree specific information (Ciesla 

and Acciavatti, 1982). Information on defoliation prior to 1947 was limited to records from 

ground observations, memoranda and letters (Dolph, 1980). Since 1947, when an aerial survey 

program was initiated, detailed information and forest pests especially in North America and 

Europe have been collected annually. The remote sensing approach in assessing and monitoring 

insect defoliation has been to relate differences in spectral response to chlorosis (yellowing), 

foliage reddening, or foliage reduction over time, assuming that these differences can be 

interpreted, classified, or correlated to damage caused by insect activity (Franklin, 2001). Remote 

sensing has been used to generate more spatially precise and detailed defoliation maps from 

which its impact on the forest resource could be determined. 

The range of remote sensing applications has included detecting and mapping defoliation, 

characterizing patterns of disturbance, modeling and predicting outbreak patterns, and providing 

data to pest management decision support systems (Lee et al., 2010). The possibility of 

forecasting the susceptibility and vulnerability of forested areas to insect defoliation has also 

been reported as a tool to provide mitigation options to forest managers (Luther et al., 1997). 

These applications were intended to produce information products that support pest management 

planning. The advantages of applying remote sensing for monitoring insect defoliation includes 

the ability to acquire relatively cheap and rapid method of acquiring up to date information over 

a large geographical area (de Beurs and Townsend, 2008). Also remote sensing has an edge over 

other methods because it is the only practical way to obtain data from inaccessible regions; it has 
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ability to map both small and large scales for easy identification and its ability to image 

defoliation in different spectral forms. 

One of the earliest research of using remote sensing to monitor defoliation was conducted in 

north Central Washington and Central Idaho in USA using aerial photographs (Heller et al., 

1981). Ciesla and Acciavatti (1982) determined that high altitude panoramic color infrared 

photography acquired during the time of peak defoliation could consistently differentiate 

between heavy defoliation, moderate defoliation, and no defoliation. Ever since, the use of 

remote sensing technology to detect, map and manage forest defoliation over large region has 

been a subject of intense interest (de Beurs and Townsend, 2008). 

In mapping areas covered with mopane woodland, Sebego and Arnberg (2002) used coloured 

infrared photographs and they discovered that though mopane woodland extent and distribution 

can accurately be mapped using colour infrared photographs, it may not be able to discriminate 

defoliated from undefoliated mopane woodland. Moreover, using aerial photographs alone was 

also time consuming and expensive since photographs need to be taken for every events of the 

defoliation process. It must however be noted that aerial photographs can form a bases on which 

other forms of remote sensing platform can be used in monitoring mopane defoliation. 

2.5 Developments in the Remote Sensing of Insect-Induced Tree Defoliation 

The increasing availability of remote sensing and geographic data has not only helped the 

detection, mapping, monitoring and management of the health of forest ecosystems especially 

those affected by insect defoliation, but also proved to be important for the protection of natural 

resources and the economy worldwide (Kantola et al., 2010). Different platforms of remote 

sensing have been used in the past for forest defoliation monitoring with varying success. A 

review of the remote sensing methods and platforms that have been used for insect defoliation 

illustrates the degrees at which they have been successful in obtaining information of operational 

relevance (i.e., used by those in forest management) (Table 2. 1). We discuss the various 

platforms and their implications in mapping mopane woodland. 
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Table 2. 1: Sample of Multispectral Remote Sensing Studies Applied in Defoliation 

Sensor Study Area Image Data Date Defoliators Comment Reference 
Landsat-1 Pennsylvania, 

USA 
1975 Gypsy Moth Classification results were subjectively analyzed and 

found to be representative of actual ground cover. 
However, errors of commission in which agricultural 
cover types were classified as heavy defoliation 
decreased classification performance. 

Williams 
(1975) 

Landsat TM Wisconsin, 
USA 

1990-1995 Jack Pine 
Budworm 

Classification was successful with single-date imagery 
but was not tested with other methods such as change 
detection. 

Radeloff et al. 
(1999) 

MODIS 
EVI 

Siberia 2002 Silk Moth Very effective in mapping large-scale conifer mortality 
and also for near real time monitoring but does not 
provide links with finer resolution validation data 

Kovacs et al. 
(2005) 

SPOT Virginia 1989 Gypsy Moth Questions regarding the completeness of this 
classification, citing the unknown effects of terrain and 
forest type were raised. 

Clerke and 
Dull (1990) 

Landsat TM Canada July (1999&2001) Aspen Good for identification but could not differentiate 
defoliation where vegetation is dense. 

Hall et al. 
(2003b) 

Landsat TM 
& SPOT 

Michigan, 
USA 

June 1988 Gypsy Moth Both can classify defoliation only on a large scale Joria and 
Ahearn (1991) 

SPOT VGT Canada 1998-2000 Hemlock 
Looper 

Good for near real-time and identifying occurrence of 
defoliation but less reliable for classifying intensity of 
defoliation 

Fraser and 
Latifovic 
(2005) 

Landsat TM Australia March 2008 Beetles and 
Sawfly 

Improved accuracy when advance analytical techniques 
was applied but still coarse for small scale monitoring 

Somers et al. 
(2010) 

MERIS Canada 2003-2005 Aspen Better than Landsat, SPOT, MODIS but unable to 
evaluate small scale details 

Van der 
Sanden et al. 

(2006) 
MODIS USA 2000-2001 Gypsy Moth Demonstrated significant relationships between 

defoliation and vegetation indices estimated at the plot 
scale. 

de Beurs and 
Townsend 

(2008) 
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2.5.1 Broadband Sensors 

Various images from remote sensing broadband sensors have been found to effectively monitor 

insect defoliation in woodland (Table 2.1). The resulting data usually classify defoliation in 

terms of light, moderate and heavy defoliation. It has been demonstrated that data from Landsat 

and other synoptic scale sensors have an appropriate spatial resolution for monitoring many 

types of insect defoliation. The advantages and pitfalls of Landsat data were recognized early. 

Williams (1975) expressed concerns about Landsat-1’s ability to effectively monitor insect 

defoliation with only eighteen-day temporal coverage and the greater than 50% chance of cloud 

cover during an acquisition over Pennsylvania. Williams and Stauffer (1978) used Landsat 

imagery acquired before and during gypsy moth defoliation. The investigators recognized that 

agricultural features could be mistaken for insect defoliation. Moreover, Williams et al. (1979) 

evaluated different types of vegetation indices on Landsat imagery acquired before and during 

peak defoliation to differentiate between defoliation and healthy forest, however, they could not 

be distinguished from healthy forest. Radeloff et al. (1999) used Landsat Thematic Mapper (TM) 

TM data to identify the forest attributes that affect jack pine budworm population levels and 

separate the spectral signatures of these attributes from those of actual jack pine budworm 

defoliation in Wisconsin. 

Hall et al. (2003a) also used Landsat multi-temporal change detection approach to map 

defoliation in insect defoliated forest of Canada with results showing consistency with other 

studies earlier carried out using the same platform. The various studies have shown the utility of 

Landsat multi-temporal imageries to identify those characteristics of a forest that make it 

susceptible to insect defoliation, as well as to identify the actual insect defoliation but could not 

clearly differentiate defoliation where vegetation is highly saturated. Therefore, it may be 

difficult for Landsat images to be used for detecting defoliation in heavily populated mopane 

woodland due to the short window for monitoring and the coarse temporal resolution of Landsat 

relative to cloud cover. 

As an alternative, other remote sensing platforms have demonstrated since the early-1990s, to 

be effective for insect defoliation detection and mapping. Two of those are the Systeme 

Probatoire d'Observation de la Terre (SPOT) and National Oceanic and Atmospheric 

Administration Advance Very High Resolution Radiometer (NOAA AVHRR) imageries (Fraser 

and Latifovic, 2005; Kovacs et al., 2005). Clerke and Dull (1990) determined the extent and 
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severity of gypsy moth defoliation in Virginia using imagery acquired by SPOT. SPOT data 

acquired before and during defoliation was used to classify insect defoliation. Based on ground 

truth data and aerial photography, the range of ratio values corresponding to heavy, moderate, 

and light defoliation were defined. Clerke and Dull (1990), however, raised questions regarding 

the completeness of this classification, citing the unknown effects of terrain and forest type on 

the extent and severity of gypsy moth defoliation. 

Dull et al. (1990) used SPOT imagery, high altitude panoramic color infrared photography, 

and traditional aerial sketch-mapping results to determine the extent of gypsy moth defoliation in 

northern Virginia. This study illustrated the importance of maintaining a GIS database to track 

defoliation extents, spray block extents, pheromone trap data, and egg mass survey results. This 

database could be used to efficiently determine the defoliated area of each county, the defoliated 

area of each property owner, and the defoliated area of each spray block. This information could 

make the evaluation of treatment success, as well as any treatment decisions very simple. Joria 

and Ahearn (1991) used a digitized USGS map to determine the locations of forested areas in 

Michigan and concentrated the study on only those forested areas using both Landsat TM and 

SPOT imageries. Landsat TM was found to be better than SPOT for differentiating the 

defoliation classes. 

Data from SPOT Vegetation (VGT) at 1 km resolution was used for mapping defoliation and 

mortality of coniferous forests due to the eastern hemlock looper, with commission errors of 

60% and omission errors of 33% respectively, and with reduced errors when aggregating the data 

into larger mapping units (Fraser and Latifovic, 2005). The authors also indicated the potential 

for near real-time monitoring, however with potentially greater errors. Fraser and Latifovic 

(2005) suggested the combination of SPOT VGT and NOAA AVHRR data for establishing a 

general system for large-scale (5–10 km
2
) forest change detection. While the general occurrence 

of defoliated areas can be identified, the classification of the intensity of defoliation has been less 

reliable using SPOT and NOAA AVHRR (de Beurs and Townsend, 2008). 

Insect defoliation outbreaks have also been investigated using Moderate Resolution Imaging 

Spectro-radiometer (MODIS) data (Kharuk et al., 2007). de Beurs and Townsend (2008) 

conducted a thorough analysis of MODIS daily, 8-day and 16-day composite data for detecting 

gypsy moth defoliation in oak forests. Their study demonstrated significant relationships 

between defoliation and vegetation indices estimated at the plot scale. They concluded that 
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MODIS data represent an important tool for insect damage detection at the regional scale. 

Furthermore, Cook et al. (2008) studied the effect of insect defoliation on forest production 

efficiency and net carbon exchange using models driven with MODIS data. In contrast to other 

multi spectral remote sensing platforms, MODIS data have a lower spatial resolution, and are 

therefore more appropriate for regional-scale analyses. In addition, MODIS data are available at 

a significantly higher temporal resolution (daily) while preserving the spectral bands that are 

available in the Landsat data. 

 However, a common problem in using MODIS data is that evaluation of coarse-resolution 

damage maps is difficult due to the general lack of spatially explicit reference data. Many of the 

cited studies have evaluated their classifications against sketch maps from aerial surveys or 

Landsat change maps. These are themselves estimates that may be limited in temporal and 

attribute accuracy. 

Relatively new Medium Resolution Imaging Spectrometer (MERIS) data according to Van 

der Sanden et al. (2006) proved to be better in detecting and monitoring insect defoliation than 

Landsat, MODIS and SPOT because of its ability to image large areas at medium spatial 

resolution. MERIS data were concluded to generally depict areas of tent caterpillar defoliation in 

Canadian aspen forests (Van der Sanden et al., 2006), however, no formal evaluation was made 

due to lack of accurate ground data. Since early 2009, the German RapidEye satellite represents 

the first high-resolution multispectral satellite operationally providing the red edge spectrum, 

followed by satellites such as WorldView-2 in 2010 and Sentinel-2 in 2014.  

Currently, RapidEye and WorldView-2 are the only commercial multispectral satellite to 

provide global, high-resolution access to the Red-Edge spectral band as part of its 8-band 

multispectral capabilities (Cheng and Chaapel, 2008). This Red Edge band has been used to track 

stress-induced changes in plants, hence it is very important band to consider when detecting and 

monitoring the health of forest. Until now, the only satellite imagery available that contains Red-

Edge data is MERIS with medium spatial resolution (300 m) (Van der Sanden et al., 2006). 

MERIS can provide some insights into the conditions of an entire field, but is unable to provide 

the segmentation necessary to evaluate small scale details, like the health of individual trees in an 

orchard, hence the advantage of RapidEye and World View-2 with higher spatial resolution. 
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Although images from SPOT, MODIS and MERIS proved a better alternative to Landsat in 

terms of the spatial, temporal and spectral resolution, they are also limited in that they do not 

contain specific windows such as red–edge (except for MERIS which still has low spatial 

resolution) which is a very important band in studying defoliation (Pu et al., 2003). Moreover, 

most of the researches on insect defoliation using multispectral images have been carried out in 

coniferous forest. Therefore, there is need to test the effectiveness of these multispectral sensors 

for monitoring insect defoliation in broadleaved forests. 

2.5.2 Hyperspectral Remote Sensing 

Further advances in satellite remote sensing and imaging spectrometry have given rise to 

hyperspectral imagery, which has been demonstrated to be a reliable and relatively accessible 

technology to study forests damaged by insects (Coops et al., 2004; Mutanga et al., 2009; Stone 

and Coops, 2004). Hyperspectral sensors, also known as imaging spectrometers are instruments 

specifically made to acquire data at high spectral and moderate spatial resolution, thereby 

allowing reflectance, radiance and emittance spectra to be constructed in such a way that it 

permits physical measurements of the Earth’s surface. Unlike multispectral imagery, a 

hyperspectral image provides hundreds of contiguous bands across the visible (VIS), near-

infrared (NIR) and shortwave infrared (SWIR) regions of the electromagnetic spectrum, offering 

unprecedented detailed spectral reflectance data from land surface features. Since major leaf 

components (e.g. pigments, water, carbon, nitrogen) produce distinctive reflectance signals at 

specific wavelengths of the aforementioned regions, hyperspectral imagery allows for the 

measurement of biochemical and biophysical attributes of the plant associated with its structure, 

physiology and phenology, and therefore with its health status (Asner, 1998; Cho and Skidmore, 

2006; Lucas et al., 2004; Mutanga and Skidmore, 2004a; Mutanga et al., 2004; Treitz and 

Howarth, 1999). 

There is mounting evidence that hyperspectral instruments have the capability, not only to 

assess defoliation, but also to identify the early signs of defoliation; in some cases before visual 

symptoms are apparent (Ismail et al., 2007; Ismail et al., 2008; Mohammed et al., 1995). This 

can be explained by the tendency of defoliated leaves to undergo reduction in photosynthetic 

activity and to lose chlorophyll. These changes alter reflectance at chlorophyll-sensitive 

wavelengths (Vogelmann et al., 1993). Researches on defoliation conducted using hyperspectral 

sensors are not limited in the literature (Table 2.2). Although broad-band sensors detect 

defoliated and non-defoliated plants, hyperspectral imagers, have the spectral detail to potentially 
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distinguish between soil, dead, and senescent trees. Hyperspectral data are demonstrated to 

discriminate plant physiological condition (Pontius et al., 2005), even at early phases of 

senescence (Campbell et al., 2004). 

Some previous studies have used hyperspectral remote sensing to detect plant defoliation due 

to water deficit (Stimson et al., 2005), insect damage (Radeloff et al., 1999), pest outbreaks 

(Wolter et al., 2008), and pollution (Campbell et al., 2004). For instance, Pontius et al. (2005) 

used AISA Eagle sensor to map hemlock decline in USA. They found that unlike multispectral 

sensors, hyperspectral sensors were able to classify defoliation in a given forest to 11-class rating 

system with 88 percent accuracy making it possible for land managers to assess and monitor 

detailed changes in forest health. Others, such as Somers et al. (2010) used Hyperion sensor to 

monitor forage defoliation in southern Australia and observed a good relationship with ground 

measurement. Additionally, the high spatial resolution data from hyperspectral sensors gives the 

ability to detect tree-level (rather than stand level) characteristics, which reduce confusion 

caused by mixed pixels (e.g. crown shading, soil, non-tree vegetation, (Greenberg et al., 2006). 

While some of these studies reveal substantial improvement over multispectral sensors, others 

believe that for accurate detection and monitoring, there will be need for the combination of both 

sensors. 

However, just like multispectral sensors, only a few studies have used hyperspectral sensors 

to monitor defoliation in broadleaved forests (Coops et al., 2003; Santos et al., 2010). To the best 

of our knowledge, no studies have been carried out to map and monitor mopane woodland 

defoliation using hyperspectral scanners. Hyperspectral sensors could actually provide more 

information of insect defoliation in broadleaved forest because of the presence of high spatial 

and different bands to which defoliation can be monitored. Therefore, further research need to be 

conducted on the use of Hyperspectral remote sensors for effective management of insect 

defoliation in broadleaved forests such as mopane woodland. 
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Table 2. 2: Sample of Hyperspectral Remote Sensing Studies Applied in Defoliation 

Sensor Study 
Area 

Defoliators Comment Reference 

AISA 
EAGLE 

USA Hemlock 
Looper 

Good for identifying defoliation 
at  tree level using biophysical 
indicators such as chlorophyll 
content 

Pontius et al. 
(2005) 

HYPERION Australia Beetles and 
Sawfly 

Good results with ground 
measurement 

Somers et al. 
(2010) 

HYPERION Chile Aphid Able to detect defoliation also at 
tree level 

Peña and Altmann 
(2009) 

 

2.6 Trade-Offs Between Sensor Resolutions for Monitoring Insect Defoliation 

We have shown that remote sensing is effective for mapping insect defoliation. However, three 

issues appear fundamental to the successful use of remote sensing to assess and monitor insect 

defoliation: the spectral, spatial characterization of defoliation and the timing of image 

acquisition. 

First, a remote sensing spectral basis for damage class limits (e.g., light, moderate, and 

severe) is required to achieve consistent detection and mapping of defoliation severity. Field and 

aerial surveys tend to rate areas defoliated into categories that remote sensing studies have 

attempted to emulate. Broad damage class limits are not conducive for consistent defoliation 

mapping because they may not correspond to differences in spectral response values that are 

spectrally or statistically separable on the image. The two factors that drive the spectral response 

of a sensor include its radiometric resolution and the range of sensitivity to the electromagnetic 

spectrum. Defoliation tends to result in either physical loss of leaf area or leaf color change, 

which results in physical differences in spectral response when compared to pre-defoliation 

images. Several consecutive years of defoliation, however, tend to result in physiological 

weakening, top kill, and mortality for some defoliators. Understanding the role these factors may 

play in the resulting spectral responses recorded in the image is important to successful use of 

remote sensing for mapping defoliation. Thus, remote sensing observations from airborne or 

satellite sensors that can be used for monitoring defoliation must be over a more continuous scale 

of spectral responses that can potentially capture a finer scale of defoliation levels rather than the 

broad classes that are typically used (Franklin, 2001; Hall et al., 2003a) hence the recent use of 

hyperspectral sensors. 

In addition to the spectral observations of defoliation, the size of the outbreak area must also 

be large enough to be detectable with the airborne or satellite sensor employed. The spatial 
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resolution of the sensor and the areal coverage of an image are also important considerations in 

the selection of the appropriate sensor. As a result, with both sensor spectral and spatial 

resolution considerations, the remote sensing of a defoliation problem is more complex than a 

simple change in foliage condition. 

Thirdly, the timing of image data acquisition should coincide with the period when spectral 

changes resulting from defoliation are most observable; for timing of data acquisition is notably 

one of the most difficult to achieve with satellite remote sensing because of the need for cloud-

free conditions during the suitable range of dates for image acquisition. Most remote sensing 

studies tend to rely on pre- and post-outbreak images to detect spectral response differences 

resulting from insect defoliation. The opportunities to acquire imagery ranging from high (e.g., 

submeter pixel size) to low spatial resolution (e.g., 1-km pixel size) are obviously increasing at 

an unprecedented rate that should help ensure that future image data will be available during the 

narrow time periods necessary to capture damage from insect defoliation. 

This section has outlined the remote sensing data used in monitoring defoliation from 

inception highlighting the strengths and weaknesses and its implications in mapping and 

detecting defoliation within mopane woodland. Logical questions that follow include: What has 

been the primary methods used in defoliation surveys and which remote sensing methods have 

been employed in mapping defoliation and to what extent have they been successful? 

2.7 Developments in Remote Sensing Techniques for Assessing Insect Defoliation 

A number of studies have demonstrated the potential of measuring defoliation from remotely 

sensed observations using different techniques (Coops et al., 2004; Stone and Coops, 2004). The 

studies use map sketching and linear regression modeling between field assessments of 

vegetation characteristics related to biophysical variable indicators of defoliation such as LAI 

and Chl content. They also relate the field measurements with vegetation indices calculated from 

the images to detect and monitor defoliation from a range of damaging agents including fungal 

infections and insect predation. Therefore, we discuss the different analytical approaches that 

have been used for detecting, mapping and monitoring insect defoliation and their implications in 

mopane defoliations monitoring. 

2.7.1 Vegetation Indices 

Most of the vegetation indices developed to detect defoliation in woodlands are based on Chl and 

water content. Vegetation indices can be used to measure changes in leaf area resulting from 
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defoliation (Nelson, 1983). Previous studies have used vegetation indices or other measures to 

examine canopy defoliation by a variety of insects. Nelson (1983) calculated the difference 

between vegetation indices on two Landsat dates using simple ratio indices such as red-green 

ratio index, and then empirically determined a threshold to separate defoliated from non-

defoliated pixels. This technique was found to be superior to competing techniques for the most 

accurate assessment of defoliated areas. It has been reported that plants under defoliation display 

a decrease in canopy reflectance in the lower portion of the near infrared, a reduced absorption in 

the Chl active region, and subsequently a shift in the red edge (Carter and Knapp, 2001). 

One simple vegetation index that has also been used in the past is the Normalized Difference 

Vegetation Index (NDVI) (Rouse et al., 1973). As defoliation occurs and leaf area decreases, the 

NDVI value will also decrease. It has recently been shown that the Wide Dynamic Range 

Vegetation Index (WDRVI) performs better than the NDVI in estimating defoliation in high-

density vegetation (Gitelson et al., 2006; Gitelson et al., 2002). While the NDVI becomes 

saturated with high densities of photosynthetic green biomass and the relationship between 

NDVI and LAI is non-linear (Mutanga and Skidmore, 2004a), the WDRVI increases the 

sensitivity of the NDVI, and hence makes the WDRVI - LAI relationship linear. More complex 

vegetation indices correct for variations in soil background and for atmospheric scattering. The 

Enhanced Vegetation Index (EVI) (Huete et al., 2002) is the standard vegetation index for 

MODIS. EVI will decrease in response to defoliation (Huete et al., 2002). 

However, due to errors (saturation in areas with significant forest cover) encountered when 

using these indices, scientist have developed better indices which includes the short wave 

infrared band (SWIR). Water strongly absorbs radiation in SWIR portion of electromagnetic 

spectrum making SWIR reflectance to be very sensitive to the amount of water in vegetation. 

SWIR reflectance is generally low for high leaf water content and increases with decrease in 

water content. The sensitivity of the SWIR has led to the development of a number of vegetation 

indices that are responsive to vegetation defoliation based on SWIR and NIR reflectance. 

Normalized Differential Water Index (NDWI) and Normalized Differential Infrared Index 

(NDII) (Gao 1996) were developed from hyperspectral data as the difference between NIR 

reflectance and a SWIR band and were found to be good detectors of defoliation. In most cases 

however, most of these indices have been modified to meet the need of researches into insect 

defoliation in modern times. All of these indices have been used in mapping and detecting 
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defoliation of different insect defoliator with varying outcomes (Coops et al., 2004; Pu et al., 

2003). While some have reported success, some of the indices have failed to efficiently 

discriminate defoliated areas from other spectrally active end members within particular 

woodlands. A common problem in dense vegetation stands is the high degree of light absorption 

making vegetation indices insensitive to biomass changes. Knowing fully the limitation of 

vegetation indices, scientists have developed and improved techniques that can accurately 

estimate biomass in more densely vegetated areas using hyperspectral derived vegetation indices 

rather than focusing on the red and NIR bands alone (Mutanga and Skidmore, 2004a). For 

detecting and mapping defoliation in mopane, we suggest the use of three categories of 

vegetation indices which are described below. 

2.7.1.1 Multiple Ratio Indices 

Multiple ratio indices such as Normalized Differential Vegetation Index (NDVI), modified 

normalized difference vegetation index (mNDVI) have been found to be good detectors of 

defoliation (Sims and Gamon, 2002). While, NDVI is a vegetation index derived from the ratio 

of red and NIR bands and has been found to be highly correlated with biophysical indicators that 

depicts defoliation (LAI and Chl content) (Dye and Tucker, 2003; Zhou et al., 2003), mNDVI 

modifies NDVI by including the reflectance at high 445nm (at which Chl absorption produce 

minimal reflectance) (Sims and Gamon, 2002). The mNDVI compensates for high leaf surface 

scattering that NDVI does not account for (Peña and Altmann, 2009). It is our opinion that 

mopane worm defoliation of mopane woodland is expected to yield a decrease in NDVI, mNDVI 

during the defoliated stage when the leaves are almost absent. The limitation of these indices in 

the context of detecting and mapping defoliation of mopane woodland will be their sensitivity to 

optical properties of reflecting soil background since for a given amount of vegetation, soil 

substrates results in higher vegetation index values which may not necessarily mean lack of 

defoliation (Sims and Gamon, 2002). To minimize the effect of soil background, other vegetation 

indices have been proposed. 

2.7.1.2 Simple Ratio Indices 

Simple ratio indices were developed to reduce or eliminate soil influence on solar reflectance 

values when monitoring forest health (Huete et al., 2002; Pen˜uelas et al., 1995). The simple 

ratio indices measured with sufficient precision is quite sensitive to vegetation changes during 

the time of peak growth. However, an inherent drawback of these indices is the loss of 



34 
 

uniqueness in information due to the fact that different leaves can have different spectral 

responses, but have band ratio values that are similar. The introduction of multiple ratios such as 

NDVI has covered the limitations of simple ratio although they both saturate when LAI is very 

high. For monitoring mopane defoliation, two simple ratios have been suggested, the Red Green 

Ratio Index (RGRI) and Red NIR Index (RNI). The two indices have been found to accurately 

determine the defoliation level of forest to a certain level since they include the combination of 

bands where healthy and unhealthy vegetation can be easily differentiated (Pen˜uelas et al., 

1995). They also eliminate topographic (irradiance) and atmospheric effects (Pen˜uelas et al., 

1995). For mopane defoliation, the ratio is expected to be high when the woodland is 

photosynthetically active i.e., the healthy stage and vice versa. 

2.7.1.3 Red Edge Indices 

Recently, new vegetation indices based on red-edge region have been used to track insect 

defoliation (Van der Sanden et al., 2006). Red-edge is defined as the rise of reflectance at the 

boundary between the chlorophyll absorption feature in VIS red wavelengths and leaf internal 

structure scattering in NIR wavelengths. The position of the red edge is consistent among 

different species and generally ranges from 680 to 780 nm (Cho and Skidmore, 2006). Red edge 

indices are constructed with bands sensitive to the Chl content and internal structure of the leaf, 

and therefore have proven to be closely related to foliage biomass quantity, growth and 

developmental stage and health status of the plant (Gitelson and Merzlyak, 1994; Sims and 

Gamon, 2002). Zarco-Tejada et al. (2000) describe Chl content as a potential indicator of 

defoliation process because of its direct role in the photosynthetic processes of light harvesting 

and initiation of electron transport and its responsiveness to a range of changes in plant health 

status at any particular time. 

Red edge indices such as Curvature index, Vogelman index, NDVI-RE and the red edge 

inflection points have been used to relate biophysical indicators that are used to measure the 

health status of woodland (Zarco-Tejada et al., 2000). Vogelman red edge index was discovered 

to be associated with leaf area and chlorophyll content while curvature index was used to track 

changes in Chl content and it was found to be strongly correlated with Chl index (Zarco-Tejada 

et al., 2000). NDVI-RE  have recently been successfully tested in relations to changes canopy 

cover (Souza et al., 2010). The red edge inflection point (REIP) has also been found to correlate 

significantly with LAI and hence could be used for monitoring the health status of woodland. 
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In monitoring mopane worm defoliation of mopane woodland therefore, it is expected that 

the changes in the values of the red edge indices mentioned above will indicate the changes in 

the health status of the canopy at the different stages of defoliation. For instance, decrease in the 

values of the red edge indices is expected during the refoliating stage when the leaves are coming 

up after insect defoliation. 

2.7.1.4 Pigment Content Indices 

When the rate of photosynthesis decreases due to plant stress, the foliage exhibits higher 

concentrations of carotenoid relative to chlorophyll pigments, while higher foliar investments of 

xanthophyll cycle pigments result as a response to low light use efficiency. Vegetation indices 

based on bands sensitive to these leaf pigments have also been demonstrated to be closely 

correlated with vegetative growth stage and the degree of stress of vegetation (Gamon and 

Surfus, 1999; Gitelson et al., 2002; Sims and Gamon, 2002). In stressed plants, the 

proportionally stronger decline of green pigments (i.e. Chls) can be used to detect defoliation. 

The two major pigment indices that have been found to be an indicator of plant stress are 

photochemical reflectance index (PRI) and Carotenoid Reflectance Index (CRI) (Gitelson et al., 

2002). The PRI and CRI were developed as a remotely-sensed indicator of Light Use Efficiency 

(LUE) (Gamon et al., 1992). They use narrow spectral bands to detect changes in leaf reflectance 

at 531 nm relative to a reference band that is usually located at around 570 nm and is not affected 

by changes in short-term stress events. 

Carotenoid pigments have multiple functions, but they are generally found in higher 

concentrations in plant leaves that are either stressed or dead. PRI and CRI have been correlated 

with plant stress in several field studies at the leaf and ecosystem levels (Pen˜uelas et al., 1995). 

They provide a quick and non-destructive assessment of leaf physiological properties (Pen˜uelas 

et al., 1995) and may be used for wide range of species (Gamon et al., 1992). The limitation of 

these indices for defoliation mapping occurs when they are related to plant water status 

(Pen˜uelas et al., 1995) especially during wilting of leaves in dry periods. It must be noted that 

PRI is sensitive to soil background reflectance (Pen˜uelas et al., 1995). However, they may be 

integrated with other vegetation indices that exploit biophysical variables to provide strategic 

remote sensing monitoring of defoliation. In mapping defoliation within mopane woodland, it is 

believed that defoliation will result in low green pigments hence low values of PRI and CRI 

based on leaf pigments during the peak of defoliation since photosynthesis activities is low or 
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even nonexistent. Narrow-band spectral reflectance may also provide information on the ratio of 

carotenoid to Chl for detecting stress effects. 

2.7.2 Change Detection 

Other studies have approached defoliation in terms of change detection methods (Collins and 

Woodcock, 1996). Relatively robust change detection methods include image differencing and 

ratio differencing. Image differencing is probably the most widely applied change detection 

algorithm for a variety of geographical environments (Coppin et al., 2004). It involves 

subtracting one date of imagery from a second date that has been precisely registered to the first. 

With "perfect" data, this would result in a data set in which positive and negative values 

represent areas of change and zero values represent no change. Nelson (1983) delineated forest 

canopy changes due to Gypsy Moth defoliation in Pennsylvania more accurately with vegetation 

index differencing than with any other single band difference or band rationing. Image ratio 

differencing on the other hand is one of the simplest and quickest change detection methods in 

insect defoliation monitoring where data are rationalized on a pixel-by-pixel basis. A pixel that 

has not changed will yield a ratio value of one. Areas of change will have values either higher or 

lower than one. The major drawback for these two change detection algorithms is that they do 

not adequately address differences in sun elevation angles or phenological changes between 

images recorded at different dates (Radeloff et al., 1999). Infact Riordan (1981) criticized the 

ratio change detection algorithm in combination with an empirical threshold definition as being 

statistically invalid. 

Image transformation techniques are frequently applied to multidate imagery that has been 

stacked in 2n-dimensional space (where n is the number of input bands per image): principal 

component analysis (PCA) and tasseled cap (Radeloff et al., 1999). Using multi-date Landsat 

TM data, Collins and Woodcock (1996) compared Kauth-Thomas and Principal Components 

transforms with Gramm Schmidt orthogonalization for mapping pest-induced forest mortality in 

the Lake Tahoe Basin, concluding that the KT transform was most sensitive to changes in 

vegetation condition. Muchoney and Haack (1994) also examined merged principal components 

analysis, image differencing, spectral-temporal change classification, and post classification 

differencing for detecting forest defoliation. Their results indicated that of the entire algorithm 

employed, defoliation was best determined by image differencing and principal components 

analysis. The exact nature of the principal components derived from multi-temporal data sets is 

difficult to ascertain without a thorough examination of the structure of the data and a visual 
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inspection of the combined images. To avoid drawing faulty conclusions, the analysis should not 

be applied as a change detection method without a thorough understanding of the study area 

(Diago et al., 2010). Moreover, the vegetation indices and most of the transformation methods 

used for monitoring defoliation are however limited by their dependence on the visibility of 

leaves in image pixels since for defoliation, it is the absence of leaves that determines the 

severity of the stress (Stone and Coops, 2004). 

By using combined registered data sets, or corresponding subsets of bands, collected under 

similar conditions, researchers have come up with another algorithm for monitoring change 

detection in forest health known as composite analysis (Coppin et al., 2004). They came up with 

classes where forest canopy change would be expected to have statistics significantly different 

from those where no change has occurred, and could be identified as such. The method can 

incorporate multistage decision logic and is sometimes referred to as "layered spectral / temporal 

change classification", "multidate clustering", or "spectral change pattern analysis". While this 

technique necessitates only a single classification, it is a very complex one, in part because of the 

added dimensionality of two dates of data. 

In numerous cases it requires many classes and many often redundant features when no 

discriminant analysis has preceded the process. It furthermore demands prior knowledge of the 

logical interrelationships of the classes and should only be used when the researcher is intimately 

familiar with the study area (Coppin et al., 2004). Burns and Joyce (1981) found the method to 

produce only change in forest cover per se without providing accurate information on the 

character of the change. Coppin et al. (2004) remarked that, since spectral and temporal features 

have equal status in the combined data set, they cannot be easily separated in the pattern 

recognition process. As a consequence, class labeling using this algorithm may be difficult. 

A mathematical model that best describes the fit between two multidate images of the same 

area can be developed through stepwise regression and also use to detect defoliation in forest. 

The algorithm assumes that a pixel at time is linearly related to the same pixel at a later time in 

all bands of the electromagnetic spectrum acquired by the sensor. This implies that the spectral 

properties of a large majority of the pixels have not changed significantly during the time 

interval (Coppin et al., 2004). The dimension of the residuals is an indicator of where change 

occurred. The regression technique accounts for differences in mean and variance between pixel 

values for different dates. Simultaneously, the adverse effects from divergences in atmospheric 
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conditions and/or sun angles are reduced. The critical part of the method is the definition of 

threshold values or limiting dimensions for the no-change pixel residuals.Singh (1989), on the 

other hand, reported the highest change detection accuracy for tropical forest change detection 

with the regression method. 

2.7.3 Statistical Classifiers 

Change Vector Analysis (CVA) is a multivariate statistical analysis that has been used 

extensively to identify changes in forest as a result of insect defoliation between image dates and 

is widely discussed in the remote sensing literature (Collins and Woodcock, 1996; Townsend et 

al., 2004). Generally, users rely upon two outputs of CVA to represent the magnitude of change, 

computed as the absolute geometric difference in the soil brightness (B), vegetation greenness 

(G), and surface wetness (W, collectively BGW), between dates, and an eight-level classification 

representing all possible directions of change bounded by BGW all increasing between dates and 

BGW all decreasing between dates (Allen and Kupfer, 2000). As noted in numerous studies 

(Allen and Kupfer, 2000; Cohen and Fiorella, 1998; Townsend et al., 2004), the limitation to this 

approach for mapping defoliation is that it requires the user to identify a threshold level in 

magnitude change that represents actual change between dates rather than changes within a date. 

This becomes very difficult to use when defoliation is rapid and can only be applied with 

imageries of high temporal resolution. 

Radeloff et al. (1999) developed an approach for monitoring defoliation in terms of the 

relative proportion of leaves in image pixels using linear spectral mixture analysis (SMA) which 

can quantify the proportion of each pixel that is occupied by individual image component (Sims 

et al. 2007). These methods have previously been used to measure defoliation in Pinus radiata 

plantations using high-resolution multi-spectral images but methods for calculating image 

fractions from hyperspectral image data are in their developmental infancy. The application of 

SMA for the assessment of defoliation offers several advantages over simple regression methods 

using spectral indices and other transformation methods in that it is capable of detecting 

vegetation cover at low and fragmented levels, and has the ability to reference a small number of 

spectrally stable endmembers (vegetation, soil, water, etc.) (Goodwin et al., 2005). The 

technique decomposes the reflectance of each pixel into the relative contribution of a limited 

number of surface endmembers making it easy to separate image components (Somers et al., 

2010). SMA methods have been used to monitor insect defoliation in broadleaved forest 

(Goodwin et al., 2005; Somers et al., 2010). However and to date, the full potential of SMA for 
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forest defoliation assessment has not yet been achieved. Residual error in fraction estimates 

provided by SMA is often introduced by the natural variability in the conditions of scene 

components, i.e., soil, plant, etc. inherent in remote sensing data. 

Similarly, researchers have used other statistical machine learning algorithm for defoliation 

monitoring (Krahwinkler and Rossman, 2011; Melgani and Bruzzone, 2004; Nitze et al., 2012). 

Two of the most common ones are support vector machine (SVM) and random forest (RF) 

algorithms. Random Forest is a machine learning algorithm that employs a bagging (bootstrap 

aggregation) operation where a number of trees (ntree) are constructed based on a random subset 

of samples derived from the training data (Breiman, 2001). The trees are independent of each 

other grown to maximum size based on a bootstrap sample from the training data set without any 

pruning, and each node is split using the best among a subset of input variables (mtry) (Breiman, 

2001). The algorithm classifies the data that are not in the trees (out-of-bag or OOB data) and by 

averaging the OOB error rates from all trees, the random forest algorithm gives an error rate 

called the OOB classification error for each input variable (Breiman, 2001). On the other hand, 

SVM is a relatively new non-parametric algorithm for image classification. In its classical 

implementation, it uses two classes (e.g. presence/absence) of training samples within a multi-

dimensional feature space to fit an optimal separating hyperplane (in each dimension, vector 

component is image gray-level) (Foody and Mathur, 2006). SVM consists of projecting vectors 

into a high dimensional feature space by means of a kernel trick, then fitting the optimal 

hyperplane that separates classes using an optimization function. Several kernels are used in the 

literature (Foody and Mathur, 2006). Previous studies have used both RF and SVM for 

classification with great success (Adam and Mutanga, 2010; Krahwinkler and Rossman, 2011; 

Melgani and Bruzzone, 2004; Menze et al., 2009; Nitze et al., 2012; Petropoulos et al., 2012; 

Rodriguez-Galiano et al., 2012; Statnikov et al., 2008; Waske et al., 2007), however and to the 

best of our knowledge no study have used the two classifiers for insect defoliation levels 

classification. Both RF and SVM algorithm are easy to implement as only two parameters (ntree 

and mtry for RF) and (C and λ for SVM) are needed for optimization (Breiman, 2001; Özçift, 

2011). 

2.8 Potential of Mapping Mopane Defoliation Using Remote Sensing 

The current method used to spatially map the mopane worm defoliation of mopane woodland is 

by field-based exercises. The effectiveness of this method is questionable because the method is 
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qualitative, subjective, and dependent on the skill of the surveyor (Coops et al., 2004). However, 

the ability of remote sensing to successfully detect and map forest health has been given great 

attention with diverse range of imageries and modeling techniques (Coops et al., 2004; Pontius et 

al., 2005; Radeloff et al., 1999). Thus remote sensing has the potential to ensure that the 

detection, mapping and monitoring of mopane worm defoliation is a possible task provided a 

sound understanding of the progression and patterns of defoliation are known. Knowledge of 

these defoliation processes allows for the development of algorithms to detect changes in foliar 

characteristics using remotely sensed data. Digital remote sensing technologies measure the 

amount of electromagnetic energy reflected from the leaves and canopy of the tree using a 

number of wavelengths which can range from 350 to 2500 nm. Researchers have used this 

spectral information, in the form of individual bands, band combinations, and vegetation indices 

to detect and map forest health (Coops et al., 2004; Pontius et al., 2005). Additionally, remote 

sensing technology can image large areas and allow for the repetitive monitoring and assessment 

of tree damage and mortality (Van der Sanden et al., 2006). 

A combination of both multispectral and hyperspectral imageries will give more insight for 

detecting and monitoring the defoliation process within mopane woodland in order to determine 

the best spatial and spectral resolution to which it can be monitored. In mapping and monitoring 

mopane defoliation using satellite remote sensing platforms therefore, spatial, spectral and 

temporal resolution must be of great importance. We therefore suggest the use of Word View-2 

and RapidEye imagery for monitoring the defoliation process. The primary strengths of 

RapidEye and Word View-2 are their high temporal resolution (1.1 days), the presence of 

windows (red edge) for monitoring defoliation and their ability to image large areas at a relative 

high spatial resolution (1.84m). The view of these authors is that with the relatively high 

resolution images of World View-2 and RapidEye, we can not only be able to map but also 

determine the extent to which spatial, spectral and temporal resolution of satellite imageries play 

in the detection and monitoring of defoliation from mopane woodland at different stages i.e. 

undefoliated, partly defoliated and refoliating stages. 

Given the success and limitations of the different techniques used in monitoring insect 

defoliation discussed above, we recommend the combination of different techniques with the aim 

of determining the best approach to mapping and monitoring defoliation within mopane 

woodland. For instance the use of vegetation indices will provide the spatio-temporal patterns of 
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mopane defoliation while more sophisticated image classification techniques such as SVM and 

RF which have been previously associated with biophysical indicators that are related to 

defoliation (Radeloff et al., 1999; Somers et al., 2010) will reduce the limitations encountered 

with the use of vegetation indices. 

2.9 Challenges of Remote Sensing In Mapping Mopane Defoliation 

Despite all the efforts of applying remote sensing, insect defoliation monitoring has been only 

moderately successful. Reliable insect defoliation monitoring has often been limited to three 

classes (e.g., heavy, medium, and light) with accuracies around 70–80%. Low defoliation levels 

remain difficult to detect. Consequently, the challenge would be to assess the different 

characteristics and defoliation process within mopane woodland, and then associate each level of 

observation with different remote sensing data types in order to provide the appropriate level of 

detail and accuracy for detection and mapping purposes. 

Three challenges may make it difficult to monitor mopane defoliation with remote sensing. 

First, mopane worm-mopane tree interactions are dynamic and periods where defoliation can be 

detected are often short. For instance, mopane worm defoliation of mopane woodland are 

bivoltine across most of its distribution with the first defoliation in November to December and 

the second in February to March, except in more arid areas where it is univoltine. This restricts 

the time period when defoliation can be detected to about 2 months. However, during the early 

stages of defoliation (when the worms are feeding on the tree), the canopy of the tree appears 

green and visually indistinguishable from healthy trees (Ciesla, 2003). Leaves become pale green 

gradually leading to total defoliation. At this stage, discriminating the defoliated part of the tree 

using remote sensing is dependent on detecting the little changes that might have occurred in the 

spectral reflectance of the tree. The subtle changes in the reflectance of defoliated vegetation, 

when measured by various broad band sensors, are often masked by the high degree of variation 

in reflectance caused by factors such as varying view geometry, illumination, and canopy density 

(Lucas et al., 2004). Moreover, because mopane worm is a wasteful feeder, its feeds on the entire 

leaflets of mopane tree giving the trees their characteristic red brown color (Ditlhogo et al., 

1996). 

Given these challenges, there are strong possibilities of using high spectral resolution data 

(hyperspectral) for effective detection, mapping and monitoring early stages of mopane 

defoliation because the data allow for the detection of detailed features using many narrow bands 
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which would have been otherwise masked by broad band sensors (Kumar et al., 2001; Mutanga 

and Skidmore, 2004a; Mutanga et al., 2009). 

The second challenge is the presence of other endmembers in mopane woodland. Most 

mopane woodland contain other tree species that are always present during the mopane worm 

defoliation making it very difficult to distinguish defoliation of mopane from reflectance of other 

end members (Vogelmann et al., 1993). Infact, reflectance of heavily defoliated mopane tree 

may be mistaken for the end members. To resolve this, two things are suggested. Firstly, it will 

be important to use hyperspectral dataset to characterize the reflectance of end members in order 

to distinguish them from actual defoliation (Somers et al., 2010). This can then be applied to 

satellite images. Secondly, in situation where hyperspectral data are not available high resolution 

multispectral with strategic bands will be accurate for detection and mapping purpose at canopy 

level and able to distinguish different understoreys using advance classification algorithm such 

as RF and SVM. 

The third challenge may occur when an image at the peak of an outbreak is being analyzed; it 

is unclear if an effect (changes in chlorosis, nutrient content or tree vitality) or a determining 

factor of the insect population drives the satellite image classification (Somers et al., 2010). 

Effects and determining factors can both lead to reasonable classification accuracy peak-

outbreak satellite imageries are analyzed. Effects and determining factors may not be important 

for a forest manager mainly interested in a quick assessment of insect outbreak. However 

separating the two and being able to identify actual defoliation is crucial for a scientist who may 

want to study the relationship between effects and defoliation. To achieve this, there may be 

need to relate the effects with the determining factors. For example, the reflectance of levels of 

defoliation from image classification algorithms can be correlated with biochemical and 

biophysical variables at sampling location to detect if there are any relationships with effects and 

determining factor of mopane defoliation. 

2.10 Synthesis and Recommendations for Remote Sensing of Mopane Defoliation 

The capabilities of the various sensor systems presently available to the forest health 

protection specialist are a key factor in the type of sensor selected for a specific application. 

Aerial sketch mapping, for example, is an excellent tool for background mapping, but subjective 

and their reliability is difficult to assess hence not suitable for the assessments of forest health. 

Today’s Earth-orbiting satellites and airborne sensors offer the advantage of image acquisition at 
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regular intervals provided that the targets of interest are not under cloud cover. They also provide 

a range of spectral sensitivity across the electromagnetic spectrum. Initial satellite sensors have a 

poor spatial resolution, however, when compared to airborne sensors. This limits their ability to 

resolve all but the most severe of forest damage signatures. However, remote sensing is a 

dynamic technology. New and improved methods of data collection, with superior resolution, are 

continuously becoming available. For instance, high spatial resolution remote sensing for 

forestry applications has reached an almost mature phase with wide range of applications. 

Numerous opportunities and challenges such as the robustness of remote sensing data processing 

and analytical methods remain. 

With increasing availability of high resolution remote sensing data like hyperspectral 

scanners and Digital Multispectral Image (DMSI) in Southern African sub-region which offers a 

potential source for the effective collection of spatially accurate, consistent, and timely imagery, 

it is essential to study the impacts of Imbrasia belina on mopane woodland. High resolution 

remote sensing data is capable of achieving higher mapping accuracies by identifying individual 

crowns (Wulder and Franklin, 2003). This is an important benefit for mapping and monitoring 

Imbrasia belina in mopane woodland as it helps to dissociate insect defoliation from other 

events, such as climate disturbance and phenology of forest type (Stone and Coops, 2004). Given 

this development, it is prudent to assess what remotely sensed methods or data sources may have 

potential for detecting, mapping and monitoring defoliation in mopane woodland. Since 

defoliation of mopane woodland by mopane worms occurred in the past and will likely re-occur 

in the future, lessons learned from this research may be applied in future mopane woodland 

management. As such, a lot of research is still to be done to fully understand the potential of high 

spatial and spectral resolution data in insect defoliation especially in broadleaf forest defoliation 

such as mopane woodland. 
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ABSTRACT 

Classification of different tree species in a semi-arid area can be challenging as a result of the 

change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is 

however a key parameter for forest management in semi-arid environment. In this study we 

examined the suitability of RapidEye satellite data for the classification of 5 tree species in 

mopane woodland of Botswana using machine leaning algorithms with limited training 

samples.We performed classification using Random Forest (RF) and Support Vector Machines 

(SVM) based on EnMap box. The overall accuracies for classifying the 5 tree species classes was 

88.75% and 85% for both SVM and RF respectively. We also demonstrated that the new red-

edge band in the RapidEye sensor has potential for classifying tree species in semi-arid 

environment when integrated with other standard bands. Similarly, we observed that where there 

are limited training samples, SVM prefers over RF. Finally, we demonstrated that the two 

accuracy measures of quantity and allocation disagreement are simpler and more helpful for the 

vast majority of remote sensing classification process than the Kappa coefficient. Overall, high 

species classification can be achieved using strategically located RapidEye bands, integrated 

with advanced processing algorithms. 

 

Keywords: Random Forest, Support Vector Machines, Tree Species Classification, Semi – 

Arid Environment, Red-Edge 
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3.1 Introduction 

In Southern Africa, natural forest and rangeland resources form an important resource base for 

food and medicinal products that form part of people’s subsistence as well as their economic 

base and well-being. One such natural forest is the mopane woodland. Mopane trees provide 

varied products that include construction and fence poles, wood for tools handles, carvings and 

utensils, firewood, rope, gum, tannin, medicines and resin, green manure, livestock browse and 

edible caterpillars (commonly referred to as mopane worms) (Mojeremane and Kgathi, 2005). 

The value of mopane woodland in Botswana alone has been estimated at US $3.3 million per 

annum, of which approximately 40% goes to producers who are primarily poor rural women 

(Sebego et al., 2008). Recent studies have however showed that the long term sustainability of 

the woodland and its resources is under threat (Adelabu et al., 2012; Ditlhogo et al., 1996). 

Mapping tree species in mopane woodland are extremely important for forest management 

purposes. Until now, there are no category specific maps of species distribution in mopane 

woodland. Moreover, forest managers need to understand the species diversity to suggest 

possible management practices that will enable efficient and sustainable use of the resources 

emanating from mopane woodland. This will further support scientific knowledge of 

environmental management practices in Africa and other sites in the world more sensitive to 

global changes. However, it is nearly impossible to acquire detailed tree species information over 

large areas purely on the basis of field assessments. Therefore, enhanced methods are required to 

get explicit information on the tree species composition and distribution patterns.    

Remote sensing has been a valuable source of information over the course of past few decades in 

mapping and monitoring forests (Quackenbush and Ke, 2007). It provides a cost-effective tool to 

help forest managers better understand forest characteristics, such as forest area, locations, and 

species, even down to the level of characterizing individual trees. The application of remote 

sensing in forest management began with manual interpretation of aerial photographs, but is 

increasingly reliant on new data and methods (Franklin, 2001). Over the last 20 years, the 

spectral and spatial resolution of satellite data has steadily increased. Medium resolution satellite 

data such as Landsat and SPOT can obtain regional-scale forest variables (Wulder and Franklin, 

2003). Airborne hyperspectral sensors meet the requirements regarding spectral and spatial 

resolution for tree species mapping. However, due to the high costs and their limited availability, 

hyperspectral data have gained limited acceptance for operational use. As higher resolution 
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satellite imageries (e.g. RapidEye) become more available, there is an increasing potential to 

provide more detailed information. Unlike medium resolution satellite imagery, which provides 

an aggregated response over a region, individual trees are visible in high spatial resolution 

imagery. This provides opportunities to differentiate species and individual trees. 

RapidEye has a relatively higher spatial resolution (5m) and a new spectral band (red-edge) in 

addition to the 4 standard bands (Blue, Green, Red, and Near Infrared). The Red Edge band is 

supposed to discriminate between healthy trees and trees that are impacted by disease and to 

enhance the separation between different species and age classes. Recent studies have shown that 

with the inclusion of the red-edge channel, RapidEye has the large capabilities for enhanced 

species mapping (Schuster et al., 2012; Tigges et al., 2013), however, its applicability in species 

classification especially in areas of limited training sites is still evolving. 

Many classification methods have been used for tree species mapping using remote sensing data. 

These include maximum likelihood, minimum distance, discriminant analysis and spectral angle 

mapper classifiers (Carleer and Wolff, 2004; Cho et al., 2010; Lobo, 1997). Maximum likelihood 

and minimum distance classifier are commonly used supervised classification methods with 

conventional multispectral data. However, there is a limitation with the application of these 

classifiers for mapping areas with limited training samples (Cho et al., 2010). Previous studies in 

semi-arid environment have shown that collecting training samples is a mammoth task because 

of the terrain and maps produced by vegetation canopy introduces noise to vegetation 

classification (Ringrose et al., 1989). As a solution to this problem, robust classification methods 

are essential for mapping species in semi-arid environment. 

We assessed two commonly used machine learning classification algorithms namely: random 

forest (RF) and support vector machines (SVM) to discriminate between the species. Previous 

studies have shown that the RF or SVM algorithm can be successfully used in species mapping 

and classification purposes (Adam and Mutanga, 2009; Chan and Paelinckx, 2008; Krahwinkler 

and Rossman, 2011; Melgani and Bruzzone, 2004). To the best of our knowledge so far, no study 

has compared the main machine learning algorithms RF and SVM for tree species mapping in a 

semi-arid environment and in particular, using the new generation satellite sensors. 

This study aims at separating Colophospermum mopane and its co-existing species in a semi-arid 

forest using spectral information provided by the RapidEye sensor applying Random Forest and 
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Support Vector Machines classification algorithms. We focus on the following research 

questions: (1). Can Colophospermum mopane and its co-existing species be separated using the 

RapidEye image with strategically positioned spectral bands? (2). Do the additional red-edge 

band of RapidEye improve the classification accuracy compared to the 4 standard bands? (3). 

Which of the classification algorithms (RF and SVM) is better for detailed tree species 

classification in areas with limited training samples based on classification accuracies?  

3.2 Study Area 

The study was undertaken in and around the Palapye/Tswapong axis of Central Region of 

Botswana (Longitude 27
o
00’ E- 27

o
33’ and Latitudes 22

o
23’ - 22

o
52’ S).  It is situated along the 

main north-south highway and is about 230 km north of Gaborone, the capital city of Botswana 

(Sebego et al., 2008). Soils around the area are well developed and variable, hence locally 

referred to as hardveld region. Temperature and rainfall regimes are highly variable, both 

temporally and spatially and are both characterized by seasonality in their occurrence (Bhalotra, 

1987). The axis covered by this study is described as mopane bushveld because mopane tree is 

found in all its growth forms and is locally monospecific. However, several other tree species 

grow in association with mopane trees. Only the dominant tree species as identified by local 

ecologist have been used in this study (Table 3.1): Grewia bicolar GB; Dichrostachys Cinerea 

DC; Acacia erubiscens AE; Acacia tortilis AT. Grewia bicolar and Dichrostachys Cinerea are 

deciduous species with short leaves and several flowering periods while Acacia tortilis and 

Acacia erubiscens have a dual flowering period during the raining and dry season (Do et al., 

2008) . On the other hand, Colophospermum mopane is a deciduous slow-growing species, with 

an erect narrow crown.  The leaves are pinnate with two large leaflets that can vary considerably 

in size on the same tree (Wessels et al., 2007) and within a growing season (Sebego et al., 2008).  

C. mopane drops its leaves in an irregular fashion from the onset of the dry season and is 

generally leafless from August to October. However, trees may retain their leaves between 

successive rainy seasons, depending on the amount and distribution of rainfall (Wessels et al., 

2007).   
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Table 3. 1: The number of sample plots, local names and the type code for Colophospermum 

mopane and its co-existing species. 

Specie Name Local Name Type Code No. of Plots 

Grewia bicolar Mogwana GB 53 

Dichrostachys Cinerea Moselesele DC 51 

Acacia erubiscens Moloto AE 53 

Acacia tortilis Mosu AT 54 

Colophospermum mopane Mopane CM 55 

3.3 Field Data Acquisition  

The field data acquisition was conducted during the summer month of January 2012 coinciding 

with the image acquisition date. Field measurements were done following random points that 

were generated from an existing land cover map of the study area using Hawth’s Analysis Tool 

(HAT) in ArcGIS 9.3 (Sebego and Arnberg, 2002). A handheld Garmin eTrex30 GPS (± 3m 

accuaracy) was then used to navigate to the respective points. Thereafter, vegetation polygons in 

which one or more of these species (Grewia bicolar GB; Dichrostachys Cinerea DC; Acacia 

erubiscens AE; Acacia tortilis AT) co-exist with Colophospermum mopane was created around 

the centered point. The vegetation polygon was defined as covering 20 m × 20 m, where the 

target species were more homogenous and were representative of more than 80% of the target 

species in each plot. This method resulted in 51 to 55 vegetation polygons for each target 

species. Thereafter, the vegetation polygons were then used to create training area and then 

overlaid on the true colour composite RapidEye image using Environment for Visualizing 

Images (ENVI) software (ENVI, 2006). The metadata such as the site description (coordinates, 

altitude and land cover class) and general weather conditions were also recorded. 

3.4 Image Acquisition and Data Preparation 

High resolution multispectral imagery was acquired over the study area by the RapidEye sensor 

on 25 January 2012. The RapidEye data set composed of 5-band multispectral imagery with 5 m 

ground sampling distance (GSD). The five bands include: blue (440 – 510 nm), green (520 – 590 

nm), red (630 – 685 nm), red-edge (690 – 730 nm) and near-infrared (760 – 850 nm). For the 

purpose of machine learning optimization, spectra pixels from RapidEye image (5 m × 5 m) were 

extracted using Environment for Visualizing Images (ENVI) software (ENVI, 2006). In this 

study, only pixels that fell completely within the measured polygons were used in the reference 

dataset so as to minimize variability and exclude mixed pixel effects of tree species (Adam et al., 
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2012). Before field data was used for analysis, data for each polygon was then averaged to 

represent one sample. 

The imagery over the study area contained 0% cloud cover, with a relatively clear atmosphere. 

All RapidEye’s products are collected by a 12 bit imager. During on-ground processing, 

radiometric corrections are applied and all image data are scaled up to 16 bit dynamic range 

(RapidEye, 2011). The scaling is done with a constant factor that converts the (relative) pixel 

DNs from the sensor into values directly related to absolute radiances. The scaling factor was 

originally determined pre-launch. Previous experimentation performed by Naughton et al. (2011) 

verified that the image registration was within a single pixel, hence further geometric processing 

was not applied. The image was atmospherically corrected using the quick atmospheric 

correction procedure in ENVI 4.7 (ENVI, 2006). 

3.5 Machine Learning Classifiers 

3.5.1The Random Forest Algorithm (RF) and Support Vector Machine (SVM) 

Random forest is a machine learning algorithm that employs a bagging (bootstrap aggregation) 

operation where a number of trees (ntree) are constructed based on a random subset of samples 

derived from the training data. Each tree is independently grown to maximum size based on a 

bootstrap sample from the training data set without any pruning, and each node is split using the 

best among a subset of input variables (mtry) (Breiman, 2001). The multiple classification trees 

then vote by plurality on the correct classification (Breiman, 2001; Lawrence et al., 2006). The 

ensemble classifies the data that are not in the trees (out-of-bag or OOB data) and by averaging 

the OOB error rates from all trees, the random forest algorithm gives an error rate called the 

OOB classification error for each input variable (Breiman, 2001). Therefore, as part of the 

classification process, the RF algorithm produces a measure of importance of each input variable 

by comparing how much the OOB error increases when a variable is removed, whilst all others 

are left unchanged (Benediktsson and Sveinsson, 2004). RF algorithm is easy to implement as 

only two parameters (ntree and mtry) need to be optimized (Breiman, 2001; Özçift, 2011). A 

more detailed discussion on RF can be found in (Breiman, 2001). 

SVM, on the other hand was originally introduced as a binary classifier (Vapnik, 1998) and is 

extensively described by Burges (1998 ) and Hsu et al. (2009).  However, typical remote sensing 

problems usually involve identification of multiple classes (more than two). Adjustments are 



51 
 

made to the simple SVM binary classifier to operate as a multi-class classifier using methods 

such as one-against-all, one-against-others, and directed acyclic graph (Krahwinkler and 

Rossman, 2011). In its classical implementation, it uses two classes (e.g. presence/absence) of 

training samples within a multidimensional feature space to fit an optimal separating hyperplane 

(in each dimension, vector component is image gray-level). In this way, SVM tries to maximize 

the margin that is the distance between the closest training samples, or support vectors, and the 

hyperplane itself. SVM consists of projecting vectors into a high dimensional feature space by 

means of a kernel trick, then fitting the optimal hyperplane that separates classes using an 

optimization function. Several kernels are used in the literature. According to Hsu et al. (2009) 

and supported by many other authors (Krahwinkler and Rossman, 2011; Melgani and Bruzzone, 

2004; Vapnik, 1998), the Gaussian radial basis function (RBF) has both advantages (i) of being 

very successful since it works in an infinite dimensional feature space; and (ii) having a single 

parameter contrary to the other well working kernels (e.g. polynomial). Noise in the data can be 

accounted for by defining a distance tolerating the data scattering, thus relaxing the decision 

constraint. 

 To demonstrate the effectiveness of RF and SVM for mapping Colophospermum mopane and its 

co-existing species, classifications of the 5 species were trained on 70% occurrences and 

evaluated on the remaining 30%. The same number of pixels were used for the presence class 

and for the absence class in order to avoid discrepancies due to unbalanced training sets (Hsu et 

al., 2009; Vapnik, 1998). The EnMap box was used to carry out the RF and SVM analysis. 

EnMap is an IDL-based tool for classification and regression analysis of remote sensing imagery. 

It can be fully integrated into the commercially available IDL/ENVI environment. It may also be 

run as an add-on freely available, license-free and platform-independent processing environment 

for remote sensing imagery. EnMap includes: generic image files with an ENVI type text header 

for the image data as well as the continuous or categorical reference data and model outputs; 

two-step image analysis consisting of separate model parameterization and application; trained 

models are saved and may be applied several times, e.g., for transfer to other data sets and 

calculate variable importance and accuracy. 

3.5.2 Optimization 

Classifier parameters, namely the number of trees and the number of variables to be randomly 

selected from the available set of variables for the RF and the regularization parameter C and the 
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kernel parameter λ for the SVM, were selected (Hsu et al., 2009). The goal was to identify 

optimal parameters so that the classifier could accurately predict unknown data. This method is 

easy to use, fast and can be more reliable than more advanced iterative techniques that do not 

always consider parameters as independent. 

3.5.3 Classification and Accuracy Assessment 

It has become customary in the remote-sensing literature to report the Kappa index of agreement 

for purposes of accuracy assessment, since Kappa also compares two maps that show a set of 

categories. However, recent studies have shown limitations of Kappa in that it gives information 

that is redundant or misleading for practical decision making. Furthermore, Pontius Jr. and 

Millones (2011) stated that the standard Kappa and its variants are frequently complicated to 

compute, difficult to understand and unhelpful to interpret. To solve this problem, Pontius Jr. and 

Millones (2011) recommend that the use of Kappa for purposes of accuracy assessment and map 

comparison be abandoned, and instead summarize the cross-tabulation matrix with two much 

simpler summary parameters: quantity disagreement and allocation disagreement. 

In this study, accuracy assessments were obtained using the Kappa analysis and the quantity 

disagreement and allocation disagreement as proposed by Pontius Jr. and Millones (2011). A 

confusion matrix was constructed so as to compare the true class with the class assigned by the 

classifier and to calculate the overall accuracy as well as the class accuracies (Ismail et al., 

2008). We report on both statistics using the confusion matrix proposed by Pontius Jr. and 

Millones (2011) and available online at http://www.clarku.edu/~rpontius/. 

The two machine learning algorithms were compared on the basis of the accuracy they produce 

when trained on the same set of training data. Based on the accuracy metrics obtained for each 

classifier in each accuracy assessments method, a statistical analysis can be performed to test if 

the difference is significantly equal or different. We compared the confusion matrix yielded by 

the RF and the SVM classifications by using the McNemar test with a 95% confidence interval. 

McNemar test is a non-parametric test that is simple to understand and execute. It has been 

shown to be sensitive and precise in comparing two or more accuracy assessments (Manandhar 

et al., 2009; Petropoulos et al., 2012). The test is based on chi square (z
2
) statistics, computed 

from two error matrics and given as: 

(z
2
) = (f12 – f21)

2
/ (f12 + f21) 

http://www.clarku.edu/~rpontius/
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Where f12 denotes the number of cases that are wrongly classified by classifier 1 but correctly 

classified by classifier 2 and f21 denotes the number of cases that are correctly classified by 

classifier 1 and wrongly classified by classifier 2 (Manandhar et al., 2009). The difference in 

accuracy between a pair of classifications is viewed as being statistically significant at a 

confidence of 95% if the calculated z-score in McNemar test is larger than 1.96 (Manandhar et 

al., 2009). 

3.6 Results 

3.6.1 Optimization 

The results of optimizing random forest parameters (ntree and mtry) at each split has shown that, 

the setting of mtry value of 2 yielded the lowest OOB error rates. When examining the ntree 

parameter, results indicated that there were relatively stable OOB error rates after ntree settings 

value of 5000. Similarly, for the SVM optimization parameters C and λ, the best value was 

obtained at 0.01 and 10 for C and λ respectively. The results show that the changes in ntree and 

mtry for RF and λ and C for SVM influence the accuracy of the classification results produced. 

Therefore, the settings of mtry (2), ntree (5000), C (0.01) and λ (10) were used for all further 

analyses.  

3.6.2 Classification Result 

The vegetation map of RF and SVM classifications are presented in Fig 3.1. From the maps, it is 

clear that using both methods of classification (RF and SVM), mapping of CM species and its 

co-existing species yielded good results from RapidEye images. The SVM classification 

produced higher overall accuracies of 88.75% compared to RF classification of 85%. 
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Figure 3. 1: Maps showing the classification of the 5 tree species using RF and SVM machine 

learning algorithm. 

Generally, classification results were best in depicting CM and AE using both methods (Fig 3.2). 

In fact, stands of CM were accurately classified with 100% class accuracy using both methods. 

Moreover, we tested the importance of the red-edge band as part of the rapid eye sensor for 

species classification in a semi- arid environment by running the classification with and without 

the red-edge band. Results showed that in both methods, when the red-edge band is excluded, the 

accuracies decreased by 8%. Furthermore, the relative importance of each of the RapidEye’s 

bands (n = 5) in mapping the 5 species was measured using random forest algorithm.  

 

Figure 3. 2: Class accuracies for each species using the RF and SVM classification algorithm. 
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The result further indicated that band 3 (Red Band; 630-690 nm) had the highest mean 

decreasing accuracy, with only the lowest mean decreasing accuracy obtained with band 1 (Blue; 

440-510nm) (Fig 3.3).  

 

Figure 3. 3: Comparing the relative importance of each RapidEye band in mapping the 5 species 

using the mean decrease in accuracy. The mean decrease in accuracy was estimated using the 

random forest algorithm.   

Similarly, we also measured the importance of each band in discriminating individual species 

among the other species (Fig 3.4). Results indicate that band 3 (Red Band; 630-690 nm) and 

band 5 (NIR; 760-880nm) are more important in separating individual species from the other. 

 

Figure 3. 4: Comparing the relative importance of each RapidEye band in mapping individual 

specie relative to other species using the mean decrease in accuracy. The mean decrease in 

accuracy was estimated using the random forest algorithm.  
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3.6.3 Classification Accuracy and Assesment 

The confusion matrix derived from the test dataset for both RF and SVM are presented in Table 

3. 2. The matrix consists of classification accuracy (CA) and overall accuracy (OA). When test 

data was used to test the RF classification result, the RF successfully mapped the five species 

(GB, DC, AE, AT, CM) with an overall accuracy of 85%. On the other hand, when the SVM was 

used for classification, the confusion matrix yielded an overall accuracy of 88.75%. Similarly, 

the accuracy assessment results for class pair indicates that Acacia erubiscens AE and Grewia 

bicolar GB; appears to be unique amongst the other species based on the highest classification 

accuracy of 93.75% (AE)  and 93.75% & 100% (GB) for the SVM and RF classifications 

respectively. Hence it is easier to discriminate Colophospermum mopane from Acacia erubiscens 

and Grewia bicolar GB compared with Dichrostachys cineria DC which yielded a class pair 

accuracy of 82.35% and 76.47% for both the SVM and RF classifications respectively. Overall 

class accuracy of Colophospermum mopane was 84.21% for SVM and 72.73% for RF. 

Table 3. 2: Comparison of confusion matrix obtained after the classification of Colophospermum 

mopane and its co-existing species from both the SVM and RF. The confusion matrix includes 

overall accuracy (OA) and class accuracy. 

SVM RF 

                   AE AT CM DC GB AE AT CM DC GB 

AE 15 1 0 0 0 15 0 1 0 0 

AT 0 11 1 3 1 0 10 3 3 0 

CM 0 0 16 0 0 0 0 16 0 0 

DC 1 0 1 14 0 1 0 2 13 0 

GB 0 0 1 0 15 0 0 1 1 14 

CA (%) 93.75 91.67 84.21 82.35 93.75 93.75 90.91 72.73 76.47 100 

OA= 88.75% OA= 85% 

 

The results of the performance of the two classification assessment (Kappa and Total 

disagreement) in mapping the five species are presented in table 3.3 for both the SVM and RF 

classification methods. The total disagreement is separated into two components: quantity 

disagreement and allocation disagreement. Quantity disagreement is the amount of pixels of a 

class in the training data that is different from the quantity of pixels of the same class in the test 

data while allocation disagreement is location of a class of pixel in the training data that is 

different from the location of the same class in the test data. Kappa for both SVM (0.86) and RF 



57 
 

(0.81) in this study represents a strong agreement between the training data and the test data. 

Table 3.3 also shows that in both methods, the total disagreement as proposed by Pontius Jr. and 

Millones (2011) (11% and 15% for SVM and RF respectively) is slightly lower than the 

disagreement from Kappa (14% and 19% for SVM and RF respectively).  

Table 3. 3: Comparing Kappa and Total disagreement methods of classification assessments. 

NB: All calculations were done using the confusion matrix proposed by Pontius Jr. and Millones 

(2011) and sourced from http://www.clarku.edu/~rpontius/. 

Parameters SVM RF 

Kappa 0.86 0.81 

Kappa Total disagreement (%) 14 19 

Allocation disagreement (%) 5 9 

Quantity disagreement (%) 6 6 

Total disagreement (%) 11 15 

We also used the confusion matrix to compare the accuracies of the two algorithm (RF and 

SVM) employed in this study using the McNemar. Table 3.4 shows that there are no significant 

differences in the accuracies obtained from both the RF and SVM classifications. The McNemar 

test z score was less than 1.96 which is required for the two algorithms to be statistically 

significantly different at 95% confidence level. 

Table 3. 4 : Comparison of SVM and RF using McNemar Test 

 SVM 

 

 

RF 

 Correctly Classified Misclassified Total 

Correctly Classified 67 4 71 
Misclassified 1 8 9 

 Total 68 12 80 

* McNemar z Score = 1.342  

3.7 Discussion 

This study highlights the effect of new generational multispectral image (RapidEye) in mapping 

tree species in semi-arid environment where there are limited training samples. We also set out to 

compare two machine learning algorithms and two classification accuracy assessments methods 

for mapping tree species in semi-arid environment.  

3.7.1 Spectral Classification of the Tree Species 

Classification of different tree species in semi-arid area such as Palapye in Botswana can be 

challenging because of the change in leaf structure and orientation as a result of limited soil 

http://www.clarku.edu/~rpontius/
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moisture (Sebego and Arnberg, 2002; Sebego et al., 2008). However, this study has shown that 

rapid-eye satellite data is highly suitable for classifying tree species in mopane woodland. The 

achieved class accuracies of the various tree species ranged between 72.73% - 100% for RF and 

82.35%-100% for SVM. In both algorithms, the lowest class values were found for 

Colophospermum mopane (CM) (72.73% & 82.35% for RF and SVM respectively). The higher 

observed misclassifications of CM may be due to spectral overlaps between CM and the other 

tree species. Similarly, from our observations in the field, a great deal of the identified 

misclassifications could be explained by the very complex forest structure in the test area. Most 

of the leaves of the tree species investigated in this study look similar. This characteristic may 

have led to mixed pixels that may cause misclassifications. 

In general, the present studies show an improvement to the works of Sebego et al. (2008) which 

was able to map mopane and its co-existing species with 74% accuracy. There are two reasons 

that may be responsible for this. Firstly, the spatial resolution of the Landsat TM image used for 

their study is coarse (30 m) compared with that of the RapidEye (5 m) used in the present study. 

Secondly, the classification algorithms (RF & SVM) used in the present study has been proved to 

outperform the one used by previous study (Maximum Likelihood)(Nitze et al., 2012). We 

therefore conclude that spatial resolution and algorithms plays an important role in classifying 

tree species in semi-arid environment. 

3.7.2 The Role of RapidEye Red-Edge Band in Tree Species Classification 

Although the five tree species could be separated accurately by using only the 4 standard bands 

(i.e. Blue, Green, Red and Near-Infrared), the use of the additional red-edge band led to a 

significant improvement of classification accuracy. For instance, the classification accuracies 

increased from 78% and 80.25% to 85% and 88.75% for RF and SVM respectively when the red 

edge band was added. The positive effect of the red-edge band can be explained by its 

relationship with the chlorophyll content of vegetation (Gitelson and Merzlyak, 1994). Several 

studies have reported the red-edge spectrum to be specifically sensitive to vegetation chlorophyll 

content (Gitelson and Merzlyak, 1994; Mutanga and Skidmore, 2007). Chlorophyll content can 

be regarded as an additional factor to explain particular sensitivities to the red edge channel. The 

chlorophyll in green leaves absorbs light for photosynthesis in the red-edge region of the 

spectrum (Thomas et al., 2008). For this reason, the red-edge region is most useful for detecting 

the absorption of visible light by the chlorophyll pigments. Moreover, since at any time each of 
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the tree species will be at different health state, the red-edge region will be efficient in separating 

the species based on their health status. 

However, the present study did not show that the red-edge is the most important band in 

classifying the tree species. In fact, the red region and the near infrared region outperformed the 

red-edge band in classifying the species. Other studies that have found the red and NIR region 

more important for classification of forest species using remote sensing data suggest that the 

presence of red-edge may only be important when incorporated with other standard bands 

(Schuster et al., 2012; Tapsall et al., 2010). 

Overall, these results are consistent with the previous studies that have found that RapidEye 

bands, with its high spectral resolution has great potential in terms of classifying and mapping 

vegetation species (Kim et al., 2011; Krahwinkler and Rossman, 2011; Sah, 2013; Tapsall et al., 

2010).  

3.7.3 Machine Leaning Algorithm’s for Species Classification in Semi-Arid Environment  

The Random Forest and Support Vector Machine were compared on their ability to map 

Colophospermum Mopane (CM) and its four major coexisting species. McNemar test shows that 

there is no statistically significant difference between RF and SVM. Nevertheless, SVM slightly 

out performed RF by 3.75%. Previous studies have shown that RF and SVM are the best 

techniques for mapping tree species using high spatial resolution imagery such as RapidEye 

(Pouteau et al., 2011). These techniques are better than conventional classification methods such 

as Maximum likelihood, Minimum Distance e.t.c. in that they handle voluminous, highly multi-

collinear, multispectral dataset (Redo and Millington, 2011). Moreover, they are very computing 

time efficient compared to the conventional methods. To our knowledge, SVM and RF have 

never been compared for mapping tree species in areas with limited training samples like semi-

arid environment reminiscent of ours.  

Other studies have showed that SVM generally outperforms RF especially when the number of 

training pixels is small (Foody and Mathur, 2006; Vapnik, 1998). The main reason is most likely 

the result of the paradigm of SVM based on a small pixel sample (i.e. support vectors) (Foody 

and Mathur, 2006). Consequently, SVM can be trained with few meaningful pixels and is able to 

fit limited information. The results from this study shows that in our context, SVM is able to map 

the tree species with higher accuracy from only small training pixels of each species (presence 
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and absence) compared to RF. Based on the above, we therefore postulate that SVM should be 

used for mapping tree species in semi-arid environment with small training pixels.  

Furthermore, it is clear from our results that kappa which incorporates an adjustment for random 

allocation agreement is not a good statistics to determine the level of agreement between the 

training dataset and test dataset in classification process because kappa has numerous conceptual 

flaws. Most importantly, it fails to distinguish quantity disagreement from allocation 

disagreement (Redo and Millington, 2011). Therefore it is far more important to report how 

much less than perfect the classification is, rather than how much better than random the 

classification is (Pontius and Millones, 2011; Redo and Millington, 2011). The quantity 

disagreement and allocation therefore present a better option to kappa. 

3.8 Conclusions 

This study has demonstrated the effectiveness of using new multispectral sensors with high 

spatial resolution and specific bands such as RapidEye when classifying tree species in a semi-

arid environment. Specifically, the study has highlighted three important conclusions: 

1. Colophospermum mopane and its co-existing species have a strong potential to be 

mapped using high resolution data such as RapidEye imagery with high accuracy. 

2. The presence of red-edge band in the RapidEye sensor has potential for classifying tree 

species in semi-arid environment when incorporated with other standard bands. 

3. Considering the relative high accuracies, low cost, simplicity and few parameters needed 

for operation, SVM will be preferred over RF in areas where there are limited training 

samples. 
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ABSTRACT 

Mopane woodland are a source of valuable resources that contribute substantially to rural 

economies and nutrition across Southern Africa. However, a number of factors have, of late, 

brought the sustainability of the mopane woodland resources into question. One of such factors 

is the difficulty in monitoring of defoliation process within the woodland. In this study we set out 

to discriminate the levels of change in forest canopy cover detectable after insect defoliation 

using ground based hyperspectral measurements in mopane woodland. Canopy spectral 

measurements were taken from three levels of defoliation: Undefoliated (UD), Partly defoliated 

(PD) and Refoliating plants (R) using ASD FieldSpec Handheld 2
TM

. A pre-filtering approach 

(ANOVA) was compared with random forest independent variable selector in selecting the 

significant wavelengths for classification. Furthermore, a backward feature elimination method 

was used to select optimal wavelengths for discriminating the different levels of defoliation in 

mopane woodland. Results show that optimal wavelengths located at 707nm, 710nm, 711nm, 

712nm, 713nm, 714nm, 727nm and 1066nm were able to discriminate between the three levels 

of defoliation. The results further show that there was no significant difference in the overall 

accuracy of classification when random forest variable selector was used 82.42% (Kappa = 0.64) 

and the pre-filtering approach (ANOVA) 81.21% (Kappa = 0.68) used before building the 

classification. Overall, the study clearly demonstrated that the dynamic process of defoliation in 

mopane woodland can be assessed and detected using hyperspectral dataset and effective 

algorithm for discrimination. 

 

Keywords: Mopane woodland, defoliation, random forest, ANOVA, hyperspectral 

 

 

 

 

 

 

 



63 
 

4.1 Introduction 

Mopane (Colophospermum mopane) woodland are a source of valuable resources that contribute 

substantially to rural economies and nutrition across Southern Africa (Wessels et al., 2007). 

Mopane trees provide varied products that include construction and fence poles, wood for tools 

handle, carvings and utensils, firewood, rope, gum, tannin, medicines and resin, green manure, 

livestock browse and edible caterpillars (commonly referred to as mopane worms) (Mojeremane 

and Kgathi, 2005). The value of mopane woodland in South Africa alone has been estimated at 

£2,850 ha-1 with annual population veldt worth £57m, of which approximately 40% goes to 

producers who are primarily poor rural women (Styles and Skinner, 2000). However, a number 

of factors have, of late, brought the sustainability of the mopane woodland resources into 

question. One of such factors is the difficulty in monitoring defoliation process within the 

woodland. This has resulted not only in the depletion of woodland resources in most rural areas 

but also low vitality and productivity of the woodland (Makhado et al., 2012). However, no 

report has related the depletion of resources to insect defoliation taking place in mopane 

woodland. Mopane tree defoliation follows the same pattern as other insect defoliators and when 

the outbreak occurs, about 200 mopane worms feed on a single tree leading to 90% of mopane 

trees, if not all, left without leaves within a mopane woodland (Ditlhogo et al., 1996). While 

mopane woodland often recover within a relatively short period after defoliation with little 

mortality, continuous defoliation may lead to deplorable effect such as decrease in chemical 

defence resulting in loss of canopies that may be fatal in the long term (Wessels et al., 2007). 

Defoliation may affect the quantity and quality of subsequent canopy growth and therefore the 

quality and availability of mopane woodland resources. 

Previous studies have demonstrated insect defoliation as a general response of stress associated 

with biophysical variables (de Beurs and Townsend, 2008; Fraser and Latifovic, 2005). For 

instance, changes in Leaf Area Index (LAI) and Chlorophyll Content (CC) have been related to 

variation in photosynthetic activities (Niemann et al., 2012). Both LAI and CC increases with 

increase in health status of plants (Koike, 1987). Therefore, when a particular tree is stressed due 

to factors such as insect defoliation, the health status of the tree depreciates. It is important to 

note that other factors such as drought and wind can also contribute to defoliation and hence 

changes in biophysical variables. However, it is difficult to spectrally differentiate between 

insect and other environmental factors induced defoliation. However, mopane worm defoliation 

is different from drought or wind induced defoliation in that defoliation follows good-healthy 
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growth patterns that would otherwise not occur if there was a severe drought or wind. Moreover, 

insect defoliation occurs in patches (within the healthy forests) but drought or wind would 

impact on all vegetation. Furthermore, insect defoliation in mopane woodland mainly occurs in 

the summer (November-April; rain season) after which defoliated plants come to leaf for the 

second time. The normal drought or wind induced defoliation for deciduous tree occurs in winter 

therefore making it easier to detect insect defoliation during summer in Mopane woodland. 

Nevertheless, we assumed in our study that drought is constant over a wide area and by 

restricting our measurements to the period immediately after defoliation; we increased the 

chances of capturing the worm effect. 

Since major leaf components (e.g. pigments, water, carbon, and nitrogen) produce distinctive 

reflectance signals at specific wavelengths; advanced remotely sensing data with high spectral 

and moderate spatial resolution is needed for effective assessment of vegetation response to 

stress levels after insect defoliation. In this regard, hyperspectral measurement will be of great 

benefit to the study of canopy level changes as a result of insect defoliation because of its 

reliability and relative accessibility (Mutanga et al., 2009; Stone and Coops, 2004). Although 

multispectral sensors have been found to map insect defoliated area (Fraser and Latifovic, 2005; 

Kharuk et al., 2007), hyperspectral sensors bring an advantage of spectral details at different 

levels of defoliation. Moreover, hyperspectral datasets facilitates detailed spectral measurement 

of reflectance related to biochemical and biophysical attributes of plants, which are associated 

with its structure, physiology and phenology, and therefore with its health status, a mammoth 

task that could not be done accurately with multi-spectral sensors (Cho and Skidmore, 2006; 

Mutanga et al., 2004; Schlerf and Atzberger, 2012). Furthermore, there is mounting evidence 

that hyperspectral data have the capability, not only to assess defoliation, but to detect early signs 

of defoliation even before visual symptoms are apparent due to its high spectral bands (Ismail et 

al., 2008). To date and to the best of our knowledge, no study has been carried out using ground 

based hyperspectral dataset to discriminate different levels of insect induced defoliation.  

However, while hyperspectral data may be good in identifying insect defoliation levels, the 

process of analyzing it is challenging due to the high dimensionality, over fitting when applying 

statistical methods, an excessive demand for sufficient field samples, and high cost (Vaiphasa et 

al., 2007). Therefore, identifying the optimal and powerful wavelengths using variable selection 

methods without losing any important information is a pre-requisite to hyperspectral remote 
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sensing application (Adam and Mutanga, 2009). This method is done, not only to reduce the 

amount of variables to simplify, but also to determine which explanatory variables are most 

suitable in discriminating. Different statistical techniques have been used to identify the optimal 

wavelengths such as discriminant analysis, canonical variate analysis, classification trees, 

support vector machines; and principal component analysis (Adam and Mutanga, 2009; Mutanga 

et al., 2009). 

Recently, random forest (RF) algorithm which was developed by (Breiman, 2001), has been 

successfully used as a variable selection and classification algorithm for hyperspectral data 

(Lawrence et al., 2006). Hyperspectral data is likely to be noisy due to factors that include 

saturation of signal, mislabeling, sensor problems and viewing geometry (DeFries and Chan, 

2000). However, random forest algorithm has been found to be more robust with respect to noise 

than other tree based ensemble methods (Ismail and Mutanga, 2011). The effectiveness of 

random forest can be explained by its ability to exploit noise and reduce dimensionality in 

hyperspectral dataset to create a more diverse classifier (Breiman, 2001). Studies in the past have 

applied pre-filtering procedure for reducing dimensionality of dataset before building the random 

forest classifier (Ismail and Mutanga, 2011).  The interest is to remove irrelevant variables and to 

score individual variable according to their discriminating power i.e. their ability to separate the 

variables. While pre-filtering approach may be able to reduce the large dataset before building 

the random forest classifier for discrimination purpose, no studies have used hyperspectral 

dataset to compare the accuracy of results obtained when pre-filtering is used and when 

independent variable selector of random forest is used.    

Dynamic detection of levels of defoliation and the areas impacted by the worms are extremely 

important for mapping and management purposes. This will in turn minimize the potential loss 

of resources in mopane woodland of Southern Africa in the long run. Up till now, there are no 

category specific defoliation maps for mopane woodland. Initial studies (Sebego et al., 2008) did 

not have such knowledge available to them and thus did not discriminate the levels of defoliation 

within the woodland. Moreover, resource managers need to know the impacts, the vulnerability 

and the extent of defoliation to suggest possible management practices that will enable efficient 

and sustainable use of the resources emanating from mopane woodland. This will further support 

scientific knowledge of environmental management practices and food security in Africa and 

other sites around the world more sensitive to global changes. Furthermore, the study introduces 
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the usage of ground based hyperspectral dataset for discriminating the different health levels in 

insect induced defoliated woodland. 

In this study therefore, our main aim is to discriminate the levels of change in forest canopy 

cover detectable after insect defoliation by ground based hyperspectral measurements in mopane 

woodland. Spectral discrimination will improve identification of the mopane canopy levels 

associated with dynamic defoliation processes that may improve our ability to map, monitor and 

assess the mopane worm defoliation of mopane woodland. Consequently, we set out to 

investigate the following; (i) whether insect defoliation levels in mopane woodland can be 

discriminated; (ii) if yes, which region(s) of electromagnetic spectrum can best be used in 

discriminating the defoliation levels. An additional objective was to examine the effectiveness of 

a filtering process which precedes the actual construction of random forest in discriminating the 

levels of insect defoliation in mopane woodland.  

4.2 Materials and Methods 

4.2.1 Study Area 

The study was conducted in the eastern part of Central District of Botswana (27
◦
E and 27

◦
33`E 

and 22
◦
23`S and 22

◦
52`S). The selection of this area was based on two major reasons: firstly, it is 

an area with typical pockets of mopane woodland where the species is found in all its various 

growth forms (tree, tall shrubs and short shrubs). Secondly, depletion of the worms has been 

reported in the area over the past few years with heavy defoliation occurring (Sebego et al., 

2008). Intensive field work was conducted with the help of locals and ecological experts to 

identify the areas that are associated with constant insect defoliation in the study area.  

4.2.2 Identifying the Defoliation Levels and Field Reflectance Measurements 

During the reconnaissance study, we identified three primary categories of canopy impact 

ranging from non-impacted undefoliated plants (UD) to partly defoliated plants (PD) and finally 

refoliating plants after severe defoliation (R) at different sites of the study area (Table 4.1). The 

time series of defoliation in mopane woodland is represented by its canopy impacts. While the 

non-impacted undefoliated canopies (UD) represents time before defoliation, the partly 

defoliated (PD) and refoliating (R) canopies represent during and after defoliation respectively. 

In the healthy non-impacted mopane canopies, leaves are distinctive, consisting of two large 

triangular leathery leaflets, sometimes likened to butterfly wings. Leaf area index  and 
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chlorophyll content  are usually high in UD state whereas and although the PD canopies appears 

green, they may be visually indistinguishable from UD canopies except for the part eaten by the 

worms (Ciesla, 2003). Leaves become pale green gradually in PD state leading to total 

defoliation and hence lower leaf area index and chlorophyll content (Adelabu et al., 2012). 

However, after total defoliation, new shoots (refoliating canopy) spring out usually after 2 

weeks. Leaflets are initially bright red-brown and glossy. The subtle visual difference in the 

canopy colour levels of UD and PD challenged us to consider more detailed and specific 

spectral-based tools for monitoring and assessing the three levels of mopane worm defoliation. 

To explore the possibilities of using hyperspectral data to detect changes in canopy status of 

mopane after insect defoliation therefore, field reflectance measurements were recorded using 

the Analytical Spectral Devices (ASD) FieldSpec Handheld 2
TM

, (ASD, 2005) to collect 

reflectance data in natural stands of Mopane at canopy level as recommended by (Barry et al., 

2008). The ASD spectrometer wavelength ranges from 325 to 1075nm with a sampling interval 

of 1nm. It has a spectral resolution of < 3nm at 700nm and wavelength accuracy of ±1nm (ASD, 

2005).  

A total of 20-25 reflectance measurements for each of the three categories namely: Healthy 

Green Undefoliated (UD), Partly Defoliated (PD) and Refoliated (R) were taken at canopy level 

in 55 different plots for each state demarcated after careful observations of the study area by 

ecological experts on 19th January, 2012 to determine areas that are used to insect defoliation 

(Table 4.1). This was done in full midday sun with spectral reflectance collected across wide 

wavelengths ranging from 325-1075 nm for each canopy at 1-nm-wide narrowband sensor. 

Canopy reflectance was measured using a pole erected approximately 2m above the canopies 

with a 25
o
 field-of-view connected to the hyperspectral spectro-radiometer. To eliminate the 

influence of branches, below-canopy vegetation or soil as a result reflectance of eaten parts, 

canopies of the PD were clipped and spectrometer measurements were taken on plane surface for 

each of the PD plots. For the purpose of this study, PD state was described as leaves in which 40-

60% of the canopies of the tree were eaten by the leaves. All the spectrometer measurements 

were normalized using a standard white panel after every 5-10 spectra measurements. The 

metadata such as the site description (coordinates, altitude and land cover class) and general 

weather conditions were also recorded alongside the spectral measurements (Milton et al., 2009). 
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These spectral measurements from each plot (n = 20–25) were then averaged to represent the 

spectral reflectance of each category in the different plots demarcated.  

 

Table 4. 1 : The number of sample plots, total number of spectral measurements collected and 

the mean reflectance for different defoliation levels in mopane woodland 

Defoliation 

levels 

Codes Images Number 

of Plots 

Number of 

Measurements 

Mean Reflectance 

Healthy 

Green 

Undefoliated 

UD  

 

 

 

55 1265  

 

Partly 

Defoliated 

PD  

 

55 1250  

 

Refoliated R  

 

55 1320  

 

4.2.3 Data Analysis 

4.2.3.1 Random Forest Algorithm 

Random Forest algorithm is a commonly used and accurate non-parametric technique developed 

by (Breiman, 2001) that can handle both categorical and continuous independent variables 
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(Horning, 2010). Random forest is based on model aggregation that can be used for both 

classification and regression problems (Benediktsson and Sveinsson, 2004; Hudak et al., 

2012).The algorithm consists of a set of random decision trees, each tree contributing to the final 

classification outcome. Through this algorithm, the variables of a dataset can be ranked and the 

most important ones can be identified to explain the outcome of interest.  

In the random forest algorithm, each tree is grown on a separate training set that is a bootstrap 

replicate of the original data (Breiman, 2001). The training data is sampled to create an in-bag 

partition to construct the tree (2/3 of the training data), and a smaller out-of-bag (OOB) partition 

(1/3 of the training data set) to validate the performance of each constructed tree (Özçift, 2011). 

The multiple trees then vote by majority on correct classification. To demonstrate the 

effectiveness of random forest algorithm for discriminating insect defoliation in mopane 

woodland, we first carried out a classification process that grows random forest on the 

hyperspectral data with ANOVA as a filter and then compared it with classification built without 

pre-filtering features (Fig 4.1).  

4.2.3.2 Variables Selection: Filter Approach  

In this study, a one-way analysis of variance (ANOVA) was used as a baseline filter approach. 

This was done to check if pre-filtering approach could improve the accuracy of random forest 

method in the selection of variables, which was used as input for classification. Furthermore, 

ANOVA analysis allowed us to examine whether there was statistical difference between the 

mean reflectance of the different defoliation levels at every spectral wavelength. For the 

purposes of this study, the null hypothesis was that there was no significant difference in spectral 

reflectance of different defoliation classes at every spectral wavelength; H0: μ1 = μ2 = μ3 versus 

the alternative hypothesis that there was a difference; vis: H1: μ1 ≠ μ2 ≠ μ3. In this case, μ1, μ2 

and μ3 are the mean spectral reflectance for UD, PD and R at every spectral wavelength, 

respectively. Wavelengths with no statistical significance were discarded while the significant 

wavelengths were used as input variables into the relevant classification algorithm. The 

distribution of spectral responses at every spectral wavelength was assumed to be normal, 

consistent with the Central limit theorem (Horning, 2010). We tested our hypothesis at every 

wavelength between 325 and 1075 nm (a total of 751 wavelengths) with 95% confidence limits 

(α =0.05). 
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4.2.3.3 Variable Importance Selection Using the Random Forest Algorithm 

The classification mode of random forest builds multiple trees based on random bootstrapped 

samples of the training data. Consequently, random forest calculates three variable importance 

measures, namely, the number of times each variable is selected, the Gini importance and the 

permutation accuracy importance measure (Hudak et al., 2012). The Gini importance of random 

forest allows for explicit feature elimination but may not be optimally adapted to spectral data 

due to the topology of its constituent classification trees which are based on orthogonal splits in 

feature space (Menze et al., 2009). In order to obtain high accuracy in classification, previous 

studies have suggested that two parameters of random forest need to be optimized (Mutanga et 

al., 2004). These parameters are the number of trees (ntree) growth and the number of variables 

(mtry) used in each tree split (Benediktsson and Sveinsson, 2004). A large number of ntrees can 

be developed using default value of mtry which is usually the square root of the number of 

variables (Özçift, 2011) . 

For the purpose of our study, we adopted the permutation accuracy importance measure using 

the OOB method to calculate the importance of a specific predictor variable (in our case 

wavelengths n=751) in discriminating between the different levels of mopane defoliation. 

Therefore, the importance of each variable used in this study is inversely proportional to the 

accuracy of the classification when that variable (wavelength) was permuted randomly (Cohen 

and Fiorella, 1998; Milton et al., 2009). The importance of each wavelength was then estimated 

by  

(a) randomly permuting the mean reflectance values of each wavelength for the OOB 

samples and then passing down the new OOB to each tree for new predictions; 

(b) averaging the difference in misclassification rate between the original and the new OOB 

data over all the trees that are grown and; 

(c) using the average as a ranking index for identifying the measure of importance of the 

wavelengths with relatively large importance in the classification process (Rodriguez-Galiano et 

al., 2012).  

The random forest library developed in R statistical software (R Development Core Team 2008) 

was used to implement the RF algorithm. 
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4.2.3.4 Optimal Variable Selection 

The limitation of variable selection methods is in their inability to choose the most important 

variables for classification. While ANOVA and random forest can provide a measure of 

variables importance, they do not automatically choose the optimal number of variables that 

yield the best classification accuracy (Liaw and Wiener, 2002). The challenge is therefore to 

select the optimum number of wavelengths that can yield the smallest misclassification error 

rate. In this regard, a backward feature elimination method (BFE) integrated with random forest 

algorithm as part of the evaluation process was implemented (Adam and Mutanga, 2010). The 

method starts by building multiple random forests after which it iteratively discards the variables 

with the smallest variable importance. At each iteration, the method selects the best mtry and 

ntree while the least promising variable is eliminated and the OOB error calculated. The smallest 

subset of variables with the lowest OOB error is then selected. To select the optimal wavelengths 

for discriminating the different defoliation levels in mopane woodland, we input the entire 

important wavelengths derived from both ANOVA and the variable selector of random forest 

(n=120) using the BFE model.  Two wavelengths were eliminated at each iteration from the 

model and the error was calculated using the OOB error estimate method. 

 

Figure 4. 1 : Summary of Data Analysis  
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 4.2.3.5 Accuracy Assessment 

For any algorithm to be adjudged well, its prediction performance has to be tested. Previous 

studies have shown that in random forests, there is no need for cross-validation or a separate test 

to get an unbiased estimate of test error as this can be done using the internally built OOB error 

estimate (Adam and Mutanga, 2009; Lawrence et al., 2006). In this study the OOB error was 

used to estimate the classification accuracy and for choosing the optimal number of wavelengths 

that yielded the smallest error rate. A confusion matrix was constructed to compare the true class 

with the class assigned by the classifier and to calculate the overall accuracy as well as the 

producer’s and user’s accuracies. The producer’s accuracy was computed by splitting the number 

of correctly classified trees in each crown condition class by the number of data sets used for that 

class (column total in the confusion matrix). User’s accuracy was calculated by dividing the 

number of correctly classified trees by the total number of trees that were classified in that crown 

condition class (row total in the confusion matrix)(Ismail et al., 2008). In addition, Kappa 

analysis, a discrete multivariate technique was used in accuracy assessment. Kappa analysis 

yielded Khat statistic (an estimate of Kappa), which was calculated to determine if one error 

matrix is significantly different from another (Cohen and Fiorella, 1998). 

4.3 Results  

4.3.1 Selecting Significant Wavelengths Using Filter Approach (ANOVA) 

In this study, we set out to examine whether there was statistical difference between the mean 

reflectance of the different insect defoliation levels in mopane woodland at every spectral 

wavelength. Result from ANOVA for the three class combinations (PD vs. UD vs. R) for 

reflectance spectra is shown in Fig 4.2. The shaded areas indicate the spectral wavelength 

locations where the class pairs exhibit statistically significant differences (p < 0.05) in spectral 

response. 

The conclusions from the ANOVA test are that the mean reflectances between the partly 

defoliated, undefoliated and refoliated stages of mopane woodland are significantly different in 

many measured wavelengths (n=120) in the visible and infrared regions of electromagnetic 

spectrum. The reflectance spectra data sets show significant differences in two spectral regions, 

the red edge and the near infrared regions of the electromagnetic spectrum.  
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Table 4.2 shows the frequency of the significant wavelengths grouped into the three spectral 

domains   which is widely employed for vegetation discrimination from hyperspectral dataset 

(Kumar et al., 2001). The table shows that there are no statistically significant wavelengths 

located in the visible (blue and Green & red) region for discriminating the three different 

defoliation levels. However, the table also show that Red-Edge (N = 65) and near-infrared (N = 

55) are the most important regions where defoliation levels has the most statistically significant 

wavelengths. To achieve our objective of investigating the effect of pre-filtering approach on 

random forest, the subset of significant wavelengths (N = 120) obtained from ANOVA was used 

as input for classification. The result from this is also expected to narrow the number of 

wavelength(s) for discriminating the insect defoliation levels. 

 

Figure 4. 2 : ANOVA results for the partly defoliated, undefoliated and refoliated stages using 

their mean spectra: The Grey shades indicate the electromagnetic region where there were 

significant differences (α =0.05). 

Table 4. 2: Frequency of significant wavelengths for discriminating the defoliation levels 

grouped into the three spectral domains defined by (Kumar et al., 2001). 

Wavelength Region (nm) Description Wavelength no. Significant Wavelength 

   No % 

325-670 Visible 346 0 0 

680-750 Red Edge 71 65 91.54 

780-1075 Near- Infrared 295 55 18.64 
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4.3.2 Measuring Variable Importance Using Random Forest 

The OOB method in random forest algorithm was applied to measure the relative importance of 

each of the entire wavelengths (N = 751) in discriminating the three defoliation levels. These 

variables (wavelengths) yielded an OOB error rate of 26.72%. The mean decrease in accuracy 

was calculated and used to rank the wavelengths (Fig 4.3). The results clearly indicated that the 

top 120 significant wavelengths with the highest mean decrease in accuracy are located 

predominantly in the red edge (N= 70) and near-infrared (N=35). Of importance is also the 

ability of the OOB method in random forest to separate noisy data as indicated in the negative 

values in figure 4.3. However unlike the ANOVA results, the random forest variable selector 

was able to select a pocket of wavelengths with high mean decrease in accuracy in the visible 

region (n=15) as part of the top 120 (Fig 4.4). When the 120 top ranked wavelengths were 

selected, the OOB error rate was 19.39%. The top 120 wavelengths were then selected and used 

as input for classifying the defoliation levels to correspond to the number of significant 

wavelengths obtained from ANOVA.  

 

Figure 4. 3: Variables importance as selected by the random forest algorithm for 751 

wavelengths. The important wavelengths are those with the highest mean decrease accuracy. 
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Figure 4. 4:  The selection of significant wavelengths by the analysis of variance (ANOVA) and 

the random forest method where 0 indicate no significant wavelength selected and 1 significant 

wavelength selected. 

4.3.3 Backward Feature Elimination 

The BFE method was performed for the significant wavelengths obtained from both ANOVA 

and random forest (N = 120) to select the optimal numbers of wavelength in classifying the three 

levels of defoliation (UD, PD, and R). The optimal wavelengths with the smallest OOB error are 

shown in Fig 4.5. The results of the BFE show that in both cases (ANOVA and random forest), 8 

optimal number of wavelengths yielded the lowest OOB error of 18.79% and 17.53% 

respectively. The results of the backward feature elimination process further indicate that the 

lowest misclassification error rate as determined by ANOVA was located at  711nm, 712nm, 

713nm, 714nm, 710nm, 727nm, 1066nm and  707nm while the random forest method’s lowest 

misclassification error rate was located 713nm, 712nm, 719nm, 705nm, 707nm, 727nm, 711nm 

and 1066nm (the ranking is based on the importance measures). It is interesting to note that the 

ANOVA and the random forest methods of selection follow a similar trend (Figure 4. 5). The 

top 8 wavelengths were then used as input variables into the final random forest model to 

classify the defoliation levels in mopane woodland. 
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ANOVA Random Forest 

  

Figure 4. 5: The backward feature elimination method for identifying the optimal wavelengths 

of discriminating defolaition levels using the significants wavelengths derived from ANOVA 

and Random forest. The best number of wavelengths with the lowest error rate is shown by the 

arrows. 

4.3.4 Classification and Accuracy Assessment 

The optimal subset of wavelengths (N =8) derived from both ANOVA and random forest was 

used as input variables in the RF classifier to discriminate between the three different defoliation 

levels in mopane woodland. Table 4.3 illustrates the confusion matrix derived from the OOB 

error estimation for the significant wavelengths derived from ANOVA and random forest. This 

matrix includes overall accuracy (OA), Kappa, user’s accuracy (UA) and producer’s accuracy 

(PA). When all the significant wavelengths from both methods (ANOVA and random forest (N = 

120) were used to test the classification accuracy, the random forest algorithm successfully 

distinguished the three different levels of defoliation (PD, UD and R) with an overall accuracy of 

79% and 80.61% respectively. On the other hand, when utilizing the top 8 wavelengths for both 

methods, ANOVA and random forest methods yielded an overall accuracy of 81.28% (k = 0.64) 

and 82.42% (k= 0.68) respectively as determined by the OOB. Similarly, the producer’s 

accuracy for discriminating between PD, UD, R levels was higher (77.27% and 78.26%) when 

the top 8 wavelengths selected by both ANOVA (711nm, 712nm, 713nm, 714nm, 710nm, 

727nm, 1066nm and 707nm) and random forest (713nm, 712nm, 719nm, 705nm, 707nm, 
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727nm, 711nm and 1066nm) methods compared to the 64.71% and 76.74% obtained when all 

the wavelengths (N=120) were used. Additionally, we used the OOB estimate of error rate to 

compare the performance of the ANOVA and random forest methods of selecting optimal 

wavelengths for discriminating the three defoliation levels. The result of performance 

assessments for both methods using different subsets of wavelengths compared with the 

misclassification error obtained when the whole dataset was used are shown in Fig 4.6. It is 

clear, over a range of the three subsets of wavelengths presented; the overall misclassification 

error rates obtained by the random forest algorithm were much lower than the misclassification 

error rates obtained by the pre-filtering method of ANOVA and the whole dataset. It is 

interesting that the use of the top 8 wavelengths yielded the lowest misclassification error rate for 

both the ANOVA (18.72 %) and random forest (17.58 %) and that the highest misclassification 

error (25%) was obtained using the whole wavelengths (n=751). 

 

Table 4. 3: Comparison of confusion matrix obtained after the classification of the three levels of 

defoliation (PD, UD, R) using the optimal wavelengths for discriminating. The confusion matrix 

includes overall accuracy (OA), Kappa, class error (CE), producer’s accuracy (PA) and user’s 

accuracy (UA) 

ANOVA RF 

 PD UD R Total UA 

(%) 

PA 

(%) 

CE 

(%) 

 PD UD R Total UA 

(%) 

PA 

(%) 

CE 

(%) 

PD 34 21 0 55 77.27 61.82 38.18 PD 36 19 0 55 78.26 65.45 34.55 

UD 10 45 0 55 68.18 81.82 18.18 UD 10 45 0 55 70.31 81.82 18.18 

R 0 0 55 55 100 100 0 R 0 0 55 55 100 100 0 

Total 44 66 55 165    Total 46 64 55 165    

CE 

(%) 

22.73 32 0     CE 

(%) 

21.7 29.7 0     

Kappa = 0.64, OA = 81.21% Kappa = 0.68, , OA = 82.42% 
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Figure 4. 6:  Comparison between the performance of the ANOVA and the random forest using 

different subsets of wavelengths selected by BFE. The misclassification error rate was estimated 

using the OOB estimate of error rate at N= 751, 120, and 8. 

4.4 Discussion 

4.4.1 Discriminating the Defoliation Levels Using ANOVA, Random Forest Variable 

Selector and BFE 

Previous studies have investigated the ability of ground based hyperspectral measurement to 

discriminate the damage caused by insects on vegetation (Coops et al., 2004; Ismail et al., 2008). 

However, to the best of our knowledge, no studies have reported spectral discrimination of levels 

of defoliation in mopane woodland. The present study is the first to report on the levels of 

defoliation namely undefoliated, partly defoliated and refoliating levels in mopane woodland 

with results indicating that hyperspectral reflectance data measured in the field can successfully 

discriminate the varying levels of canopy impact. Results from the two methods (ANOVA and 

random forest) used in this study show that there is a significant difference between the mean 

reflectance for the three levels with a large number of significant wavelengths located in the 

visible and near-infrared regions of the electromagnetic spectrum. More specifically, results 

show that in both methods, at least 60% of significant wavelengths are located in region between 

680nm to 750nm (n= 65 for ANOVA and n=70 for random forest) while the other wavelengths 

are majorly located in the near infrared (n=55 for ANOVA and n=35 for random forest) and 

green (n=15 for random forest).   
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The ability of random forest to select a pocket of wavelength (n=15) at the green region of 

electromagnetic spectrum can be explained by its effectiveness in exploiting noise and reducing 

dimensionality of hyperspectral data when compared to ANOVA(Benediktsson and Sveinsson, 

2004; Breiman, 2001). As mentioned in (Carter and Miller, 1994), green and red edge 

wavelengths are sensitive to the chlorophyll content. Studies have also shown that blue shift in 

canopy reflectance at the red region of the electromagnetic spectrum are generally indicators of 

stress in vegetation (Carter, 1994; Carter and Knapp, 2001). The locations of the significant 

wavelengths in this region confirm that worms affect the chlorophyll content of mopane leaves. 

Although chlorophyll content was not measured in this study, it is plausible to say that the 

prevalence of significant wavelengths in the red edge region is due to the effects of chlorophyll. 

It is therefore assumed that both the chlorophyll concentrations will vary with the different levels 

of insect defoliation in mopane woodland. This hypothesis is still speculative and would 

therefore have to be further tested using foliar biochemistry analysis. While it is the pigments 

that control the spectral responses of leaves in the visible wavelengths, the infrared region is 

sensitive to the cellular structure and water content of leaves (Coops et al., 2004).The significant 

difference in the near infrared region results obtained in this study may be an indicator of water 

stress suffered by the mopane leaves. Thus the results suggest that future research may benefit 

from correlation analyses between hyperspectral data and the mopane leaves CC, LAI and cell 

structure.  

Furthermore, one of our objectives was to find the wavelengths with strongest discriminating 

power between the defoliation levels. However, both ANOVA and the random forest variable 

selection methods were unable to automatically choose the optimal number of variables that 

could yield the lowest error rate.  Hence, the BFE method used in this study provided the optimal 

numbers of important variables that offer the lowest misclassification error rate in both methods. 

Although no single wavelength was capable of total separability, spectral separability of all the 

levels is possible when using eight wavelengths combination. It is worthy of note that in both 

methods, the majority of wavelengths (n=7 in both methods) that produce the best combination 

of wavelengths with highest discriminatory power are located in the red edge region of 

electromagnetic spectrum. This suggests and confirms the results of (Carter and Knapp, 2001) 

and our earlier results that the red edge is an important region for discriminating defoliation 

levels as a result of insect defoliation. The successful use of BFE for the discrimination of the 

different level of insect defoliation with only a few wavelengths (N=8) confirmed its utility as a 
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good variable selection method (Lawrence et al., 2006). This result confirms the assertions of 

previous studies (Adam et al., 2012) that have reported that the BFE has been applied in remote 

sensing image classifications with much better performance. Overall, the result shows the 

excellent performance of the BFE method in dimensionality and noise reduction without 

sacrificing significant spectral information. The results therefore encourage more investigation 

into the effectiveness of using airborne and satellite hyperspectral and multispectral sensors for 

mapping insect defoliation in mopane woodland. 

4.4.2 Effectiveness of Pre-Filtering Process on Random Forest in Discriminating 

Defoliation Levels 

The result from the pre-filtering process (ANOVA) employed in this study did not significantly 

differ from the result from the random variable selector. For instance, the classification accuracy 

yielded 79% (ANOVA) and 80.61% (RF variable selector) with a KHAT value of 0.70 and 0.71 

when selecting the top 120 important wavelengths for discrimination. However, these accuracies 

were relatively higher than when the whole dataset (n=751) was used for classification (75%). 

This may suggest the effectiveness of filtering process is considerable before building the 

random forest classifier. As the whole dataset has a very large number of variables but it is 

expected that only very few are important, filtering increases the probability to capture 

informative variables. As a consequence, growing a few trees on small sized subsets results in 

higher accuracy values compared with the forest grown on the original dataset. The results are 

comparable with Lawrence et al. (2006) who found that using full hyperspectral dataset in 

classification produced lower overall accuracy than when the significant wavelengths were 

selected using a filter. Moreover, the results indicate that, in the model-based analysis, the 

increase of hyperspectral bands could lead to a decrease in the classification accuracy because 

the noise in the data propagates through the classification model (Benediktsson and Sveinsson, 

2004). 

The results from the BFE further indicate that when the optimal selected wavelengths (n=8) was 

used for classification, it produces an overall accuracy of 81.28% and 82.42% and KHAT value 

of 0.72 and 0.74  for ANOVA and RF respectively. This further shows that there is no significant 

difference in the overall accuracy of both method of filtering. Although previous studies have 

showed that pre-filtering is an important task before building random forest classifier for 

discrimination (Adam et al., 2011; Ismail and Mutanga, 2011), our results suggest that filtering 
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process itself can be done using the random forest variable selector with good classification 

accuracy rather than using a different filter like ANOVA to prevent time wastage and 

inconsistency in the selection process. 

 In summary, this study clearly demonstrated that the dynamic process of defoliation from 

healthy undefoliated canopies through partly defoliated and then refoliating canopies after insect 

defoliation can be assessed and detected using hyperspectral dataset and effective algorithm for 

discrimination. We therefore postulate that remotely sensed area-wide hyperspectral and 

multispectral imagery could be effectively applied for early detection and spatial distribution of 

multiple health levels of vegetation after insect defoliation if the image data covers the spectral 

ranges as described above. 

4.5 Conclusions 

In this study, we examined the possibility of using ground based hyperspectral data to 

discriminate between three levels of mopane worm defoliation severity (undefoliated, partly 

defoliated and refoliating coded by UD, PD and R respectively). A better understanding has been 

gained about specific regions of the electromagnetic spectrum that offer the useful information 

content for discriminating insect defoliation in mopane woodland. The study has shown that 

there is significant difference between the mean reflectance for all the three levels of defoliation 

with a large number of significant wavelengths located in the red edge and near infrared region 

of electromagnetic spectrum. Furthermore, the important pre-requisite (i.e. optimal wavelengths 

selection) for the potential upscaling of results to either airborne or spaceborne platform was 

established. Although no single wavelength was able to discriminate between all the defoliation 

levels, wavelengths located at 707nm, 711nm, 712nm, 713nm, 727nm and 1066nm show the 

greatest potential for discrimination. We further established the effectiveness of the random 

forest variable selector over the pre-filtering approach in the classification process. Overall, the 

result from this study provides evidence that encourages the capability of hyperspectral data for 

discriminating insect defoliation levels in mopane woodland. 

Future work will include further improvement of hyperspectral signal analysis through the 

correlation analyses between hyperspectral data and the mopane leaves chlorophyll content and 

structure based on those wavelengths that are determined to be most significant. In this regard, 

we expect that the result from this study to be useful for early detection, mapping and 



82 
 

management of mopane defoliation as a result of mopane woodland thereby reducing the 

depletion of resources derived from the woodland. Furthermore, the potential for assimilation of 

the optimal bands obtained in this study could help in developing future land-use-land-cover 

mapping sensors. 
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CHAPTER FIVE 
 

Classification of Insect Defoliation Levels Using New Generation 

Multispectral Imagery 
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S. Adelabu, O. Mutanga, and E. Adam, (In Review),“Evaluating the impact of red–edge band 

from RapidEye Image for classifying insect defoliation levels” IEEE Journal of Selected Topics 

in Earth Observation and Remote Sensing. 
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ABSTRACT 

The prospect of regular assessments of insect defoliation using remote sensing technologies has 

increased in recent years through advances in the understanding of the spectral reflectance 

properties of vegetation. The aim of the present study was to evaluate the ability of the red edge 

channel of RapidEye imagery to discriminate different levels of insect defoliation in an African 

savanna. Random Forest and Support vector machine classification algorithms were applied 

using different sets of spectral analysis involving the red edge band. Results show that the 

integration of information from red edge increases classification accuracy of insect defoliation 

levels in all analysis performed in the study. For instance, when all the 5 bands of RapidEye 

imagery were used for classification, the overall accuracies increases about 19% and 21% for 

SVM and RF, respectively, as opposed to when the red edge channel was excluded.  We also 

found that the Normalized Difference Red-Edge index yielded a better accuracy than Normalized 

Difference Vegetation Index. We conclude that the red-edge channel of relatively affordable and 

readily available high-resolution multispectral satellite data such as RapidEye has the potential to 

considerably improve insect defoliation classification especially in sub-Saharan Africa where 

data availability is limited. 

Keywords: defoliation, red-edge, RapidEye, support vector machine 

5.1 Introduction 

The prospect of regular assessments of insect defoliation using remote sensing technologies has 

increased in recent years through advances in the understanding of the spectral reflectance 

properties of vegetation (Coops et al., 2004; Pietrzykowski et al., 2006; Stone and Coops, 2004). 

Recent evidence suggests that new damaging insect defoliators are appearing at an increasing 

rate which could affect the future sustainability of forest industries in developing world such as 

Africa (Ditlhogo et al., 1996). In Southern Africa, canopy defoliation caused by insects 

represents a major disorder in many forest ecosystems. Damage from insect affects the forest 

growth and disturbs its productivity and value over large areas. Moreover, the economic losses 

due to insect attacks and failure to account for insect defoliation can result in large errors in long-

term predictions of carbon sequestration (de Beurs and Townsend, 2008; Kovacs et al., 2005). 

However, literature on insect defoliation classification in sub-Sahara-Africa using remote 
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sensing is still rudimentary. This could be as a result of lack of understanding of the defoliators, 

techniques, and unavailability of right sensors for classification among other. 

The remote sensing approach in assessing and monitoring insect defoliation has focused on 

relating differences in spectral response to chlorosis (yellowing), foliage reddening, or foliage 

reduction over time (Franklin, 2001; Hall et al., 2003a).  However, high technical potential for 

improvement of the accuracy of insect defoliation classification results are still needed (Schuster 

et al., 2012). Thus, developments are still ongoing for improving the capabilities of satellite, 

sensors and classification algorithms for insect defoliation classification. With regards to 

resolutions of remote sensing sensors, recent studies have shown that hyperspectral data could 

adequately be used for insect defoliation classification regarding spectral and spatial resolution 

(Adelabu et al., 2013; Carter and Knapp, 2001; Lawrence and Labus, 2003). Nevertheless, owing 

to its high costs and limited availability, hyperspectral data have gained limited acceptance for 

operational use. Development has therefore shifted towards the introduction of additional bands 

in the broad-band multispectral sensors, in particular the red-edge spectrum (Schuster et al., 

2012).  

Several researchers have associated the changes in chlorophyll concentration to the shift in the 

red edge which is the inflection point that occurs in the rapid transition between red and near 

infra-red reflectance (Gitelson et al., 1996). This changes have been related to plant stress, forest 

decline, and leaf development (Thomas et al., 2008; Zarco-Tejada et al., 2000). Majority of 

researches on the red-edge region of electromagnetic spectrum evaluate chlorophyll content or 

the physiological status of plants in view of identifying vegetation stress (Gitelson et al., 2006; 

Mutanga and Skidmore, 2007). Similarly, few studies have analyzed the relationship between 

chlorophyll content and vegetation indices, especially relations between wavelength of the red 

edge and reflectance in the red region of the spectrum (Gitelson et al., 1996). The most common 

vegetation spectral index, Normalized Difference Vegetation Index (NDVI), Tucker (1979) has 

been found to be useful for defoliation mapping because it has been related to changes in 

chlorophyll concentration and estimation of photosynthetic activity (Carter and Knapp, 2001; 

Gupta et al., 2003). Studies have however shown that NDVI becomes saturated over high 

biomass (Mutanga and Skidmore, 2004b) and are very sensitive to canopy background 

brightness (Huete et al., 2002). However, the NDVI-RE (red-edge adaptation of NDVI) have 

recently been successfully tested in relations to canopy cover (Schuster et al., 2012; Souza et al., 
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2010), it is therefore necessary to investigate it as a potential substitute to the classic NDVI for 

classifying insect defoliation.  

Previous studies have inferred red-edge from mainly reflectance taking from field spectrometry, 

introduction of narrow band analysis has however brought development to imaging spectroscopy 

especially the airborne sensors (Gupta et al., 2003; Schuster et al., 2012; Smith et al., 2004). 

While the Medium Resolution Imaging Spectrometer (MERIS) sensor operated as payload on 

ENVISAT was the first to provide discontinuous red edge spectral bands (Dash and Curran, 

2007), the data has not been very popular in African environment due to the cost involved. Other 

companies such as German RapidEye since early 2009 have developed high-resolution 

multispectral satellite operationally providing the red edge spectrum. Previous study by Schuster 

et al. (2012) has tested the red-edge channel for improving land use classifications with great 

results, however no study has tested the ability of the red edge of multispectral imagery for 

classifying insect defoliations. The good results of Schuster et al. (2012) prompted the present 

study. Consequently, the aim of the present study is to evaluate the benefit of the red-edge band 

of rapid eye imagery in discriminating different levels of insect defoliation.  

5.2 Study Area and Field Data Collection 

The study was conducted in mopane woodland in the eastern part of Central District of Botswana 

(27
◦
E and 27

◦
33`E and 22

◦
23`S and 22

◦
52`S) (Fig 5.1). The area was chosen because heavy 

defoliation has been reported in the area over the past few years (Sebego et al., 2008). Intensive 

field work was conducted with the help of locals and ecological experts to identify areas that are 

associated with constant insect (mopane worm) defoliation. Visual observation shows that the 

time series of defoliation in mopane woodland are in terms of its canopy impacts. Three primary 

categories of canopy impact ranging from non-impacted undefoliated plants (UD) to partly 

defoliated plants (PD) and finally refoliating plants after severe defoliation (R) at different sites 

of the study area were observed (Fig 5.2). While UD represents time before defoliation, PD and 

R represent during and after defoliation respectively. In the healthy non-impacted Mopane 

canopies (UD), leaves are distinctive, consisting of two large triangular leathery leaflets, 

sometimes likened to butterfly wings. Although the PD canopies appear green, they may be 

visually indistinguishable from UD canopies except for the part eaten by the worms. Leaves 

become pale green gradually in PD state leading to total defoliation. However, after total 



87 
 

defoliation takes place, new shoots (refoliating canopy) also spring out usually 2 weeks after. 

Leaflets are initially bright red-brown and glossy.  

It is important to note that while other factors such as drought and wind can also contribute to 

defoliation and hence changes in biophysical variables, it is difficult to spectrally differentiate 

between insect and other environmental factors induced defoliation. However, mopane worm 

defoliation is different from drought or wind induced defoliation in that defoliation follows 

good-healthy growth patterns that would otherwise not occur if there was a severe drought or 

wind. Moreover, insect defoliation occurs in patches (within the healthy forests) but drought or 

wind would impact on all vegetation. Furthermore, insect defoliation in mopane woodland 

mainly occurs in the summer (November-April; rain season) after which defoliated plants come 

to leaf for the second time. The normal drought or wind induced defoliation for deciduous tree 

occurs in winter therefore making it easier to detect insect defoliation during summer in mopane 

woodland. Nevertheless, we assumed that in our study drought is constant over a wide area and 

by restricting our measurements to the period immediately after defoliation, we increased the 

chances of capturing the worm effect. 

The field data acquisition was conducted during the summer month of January 2012, coinciding 

with the image acquisition date. Field measurements were done following random points that 

were generated from an existing land cover map of the study area using Hawth’s Analysis Tool 

(HAT) in ArcGIS 9.3 (Sebego and Arnberg, 2002). A handheld Garmin eTrex30 GPS (± 3m 

accuaracy) was then used to navigate to the respective points. Thereafter, defoliation plots were 

created around the centered point in which 80% of the trees are said to belong to a particular 

defoliation level considering the total tree cover per plot. To eliminate the influence of branches, 

below-canopy vegetation or soil as a result reflectance of eaten parts, canopies of the PD were 

clipped and spectrometer measurements were taken on plane surface for each of the PD plots. 

For the purpose of this study, PD state was described as leaves in which 40-60% of the canopies 

of the tree were eaten by the leaves. 

The defoliation plot was defined as covering 20 m × 20 m resulting in 80-84 defoliation plots for 

each defoliation level. Thereafter, the defoliation plots were then used to create training area and 

then overlaid on the true colour composite RapidEye image for extraction of the pixels spectra (5 

m × 5 m)  using Environment for Visualizing Images (ENVI) software (ENVI, 2006). The 
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metadata such as the site description (coordinates, altitude, and land cover class) and general 

weather conditions were also recorded. 



89 
 

 

 

Figure 5. 1: Distribution of Mopane woodland in South Eastern Botswana and the Blue, Green, and Red Band Combination of RapidEye 

Image of the study area 
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Figure 5. 2 : Images for Different Defoliation Levels in Mopane Woodland 

 

5.3 Satellite Remotely Sensed Data 

RapidEye image used in this study was acquired on 25 January 2012. The RapidEye data set 

composed of 5-band multispectral imagery with 5 m ground sampling distance (GSD). The five 

bands include: blue (440 – 510 nm), green (520 – 590 nm), red (630 – 685 nm), red-edge (690 – 

730 nm) and, near-infrared (760 – 850 nm). The imagery over the study area contained 0% cloud 

cover, with a relatively clear atmosphere. Previous experiments performed by Naughton et al. 

(2011) led to the assumption that the image registration was within a single pixel, hence no 

further geometric processing was applied. The image was atmospherically corrected using the 

quick atmospheric correction procedure in ENVI 4.7 (ENVI, 2006). 

5.4 Spectral Analysis 

For analyzing the extracted spectral data, four different sets of spectral features were used as 

classification input. This include the original five bands of RapidEye image, four bands of the 

RapidEye image excluding the red-edge band, NDVI derived from band 3 and band 5 of the 

image and, the red-edge adaptation of NDVI derived from band 4 and band 5 of the RapidEye 

image. The result from each of these classification, were put to comparison as described below: 

Analysis 1:  All bands vs. 4 bands (excluding red-edge)  
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Analysis 2:  NDVI vs. NDVI-RE 

Analysis 3: All bands + NDVI vs. All bands + NDVI-RE 

Similarly, combination of all input variables i.e. all bands, NDVI and NDVI-RE were used for 

classification to test the sensitivity of each input variable to the classification result. 

Two different machine learning algorithms: support vector machine (SVM) and random forest 

were used to test the strength of the results obtained from this study. SVM is a relatively new 

non-parametric algorithm for image classification. In its classical implementation, it uses two 

classes (e.g. presence/absence) of training samples within a multi-dimensional feature space to fit 

an optimal separating hyperplane (in each dimension, vector component is image gray-level) 

(Foody and Mathur, 2006). In this way, SVM tries to maximize the margin, which is the distance 

between the closest training samples, or support vectors, and the hyperplane itself. SVM consists 

of projecting vectors into a high dimensional feature space by means of a kernel trick, then 

fitting the optimal hyperplane that separates classes using an optimization function. Several 

kernels are used in the literature (Foody and Mathur, 2006). 

On the other hand, Random Forest is a machine learning algorithm that employs a bagging 

(bootstrap aggregation) operation where a number of trees (ntree) are constructed based on a 

random subset of samples derived from the training data (Breiman, 2001). Each tree is 

independently grown to maximum size based on a bootstrap sample from the training data set 

without any pruning, and each node is split using the best among a subset of input variables 

(mtry) (Breiman, 2001). The multiple classification trees then vote by plurality on the correct 

classification (Breiman, 2001; Lawrence et al., 2006). The ensemble classifies the data that are 

not in the trees (out-of-bag or OOB data) and by averaging the OOB error rates from all trees, 

the random forest algorithm gives an error rate called the OOB classification error for each input 

variable (Breiman, 2001). Therefore, as part of the classification process, the RF algorithm 

produces a measure of importance of each input variable by comparing how much the OOB error 

increases when a variable is removed, whilst all others are left unchanged (Benediktsson and 

Sveinsson, 2004). Both RF and SVM algorithm is easy to implement as only two parameters 

(ntree and mtry for RF) and (C and λ for SVM) are needed to be optimized (Breiman, 2001; 

Özçift, 2011). In this study, 70% of the dataset for each of the defoliation level was used for 
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training while the other 30% was used for validation in both algorithms. All analysis was done in 

R statistical software (R Development Core Team 2008). 

5.5 Accuracy Assessment 

In describing the results of this study, we performed accuracy assessment for each class using the 

quantity disagreement and allocation disagreement as proposed by Pontius Jr. and Millones 

(2011). A confusion matrix was constructed so as to compare the true class with the class 

assigned by the classifier and to calculate the overall accuracy as well as the class accuracies. In 

order to evaluate and discuss red-edge effects using the class and overall classification accuracies 

for the respective comparative feature sets of analysis 1, 2, 3, and 4, McNemar test with a 95% 

confidence interval was used. McNemar test is a non-parametric test that has been shown to be 

sensitive and precise in comparing two or more accuracy assessments (Manandhar et al., 2009; 

Petropoulos et al., 2012). The test is based on chi square (z
2
) statistics, computed from two error 

matrics and given as: 

(z
2
) = (f12 – f21)

2
/ (f12 + f21) 

Where f12 denotes the number of cases that are wrongly classified by classifier 1 but correctly 

classified by classifier 2 and f21 denotes the number of cases that are correctly classified by 

classifier 1 and wrongly classified by classifier 2 (Manandhar et al., 2009). The difference in 

accuracy between a pair of classifications is viewed as being statistically significant at a 

confidence of 95% if the calculated z-score in McNemar test is larger than 1.96 (Manandhar et 

al., 2009). 

 5.6 Results 

5.6.1 Classification using the RapidEye Five Bands Vs. Four Bands (Excluding Red-Edge) 

Results from the first analysis (analysis 1) of both classification algorithms (Support Vector 

Machine and Random Forest) indicate that the overall accuracy were significantly higher when 

all the RapidEye 5 bands were used as opposed to when 4 bands were used, excluding the red-

edge (Table 5.1). For Instance, the overall accuracy reaches 80% (SVM) and 79% (RF) when the 

red-edge channel is included as input features, while the overall accuracy was 61% (SVM) and 
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58% (RF) when the red edge channel was excluded. Hence, the overall accuracies increase about 

19% and 21% for SVM and RF, respectively, resulting in an increase of 20% when averaged for 

both algorithms. However, as Table 5.1 indicates, the sensitivity to the red-edge depends on the 

defoliation level being investigated. Comparing the two classification (E1 and E2) using 

McNemar test, it was observed that there was significant difference (McNemar z score = 2.416 

and 2.612 for RF and SVM respectively) between the matrix produced from the classifications in 

both algorithms. With regards to class specifics, differences were observed in terms of accuracies 

especially for refoliating levels. For instance, the improvement for PD and UD ranges only from 

4% -8% whereas the R level improved by 44-56%.  

Table 5. 1 : Class accuracies and percentage deviations for Analysis 1 based on SVMand RF  

  RF SVM 

  AB AB-RE Dev. (%) AB  AB-RE Dev. (%) 

PD 56 52 4 68 60 8 

R 96 40 56 88 44 44 

UD 84 80 4 84 80 4 

Overall Accuracy (%) 79 58 21 80 61 19 

     * AB = All bands, AB-RE= All bands excluding Red-edge 

5.6.2 Classification using NDVI vs. NDVI-RE 

Overall accuracies for the feature stacks investigated in Analysis 2, where the NDVI 

classification was compared with NDVI-RE classification are reported in Table 5.2. Again, both 

algorithms showed a rise in classification accuracy when the NDVI-RE was used instead of the 

NDVI. The result shows an increase in overall accuracy deviation of 23% and 32% for both RF 

and SVM, respectively. With respect to class-specific, outstanding accuracy increases were again 

observed for refoliating defoliation level as compared with other classes. For instance, the 

accuracy improved by 40% and 52% for RF and SVM respectively while the PD level increased 

by 20% and 16% and UD 36% and 10%. Similarly, the same trends as Analysis 1 were observed 

for the comparison of the two classifications. Relatively higher significant differences were 

observed for the two classifications as compared to Analysis 1 (McNemar z score = 4.32 and 

3.56 for RF and SVM, respectively). It must also be noted that the NDVI-RE shows the highest 

accuracy values (84% and 83% for RF and SVM, respectively) in all the classification conducted 

in this study. 
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Table 5. 2: Class accuracies and percentage deviations for Analysis 2 based on SVM and RF  

 RF SVM 

 NDVI NDVI-RE Dev. (%) NDVI NDVI-RE Dev. (%) 

PD 52 72 20 60 76 16 

R 52 92 40 44 96 52 

UD 48 84 36 80 70 10 

Overall Accuracy (%) 61 84 23 51 83 32 

 

5.6.3 Classification using NDVI vs. NDVI-RE as Additional Features 

Results from Analysis 3 (using NDVI or NDVI-RE as additional features) shows that the overall 

accuracy did improve when the NDVI-RE was added to the 5 bands of RapidEye image over the 

addition of NDVI in both algorithms. For example, there was an increase of 17% and 10% in the 

overall accuracy for RF and SVM, respectively (Table 5.3). Although, when comparing the 

effect of red-edge, Analysis 3 shows a slight increase in overall accuracy (80% and 81% for RF 

and SVM, respectively) over Analysis 1 (79% and 80% for RF and SVM, respectively), it was 

still lower than Analysis 2 (84% and 83% for RF and SVM, respectively). Similarly and just like 

the previous 2 analysis (1&2), significant difference was observed when the NDVI-RE was used 

as an additional feature as opposed to NDVI (McNemar z score = 2.52 and 2.38 for RF and 

SVM, respectively). Regarding class-specific results, Table 5.3 illustrates that percent deviations 

remained higher for R (24% for RF and 18% for SVM) as compared to PD (12% for RF and 

16% for SVM) and UD (16% for RF and 11% for SVM) as observed in the previous analysis. 

Table 5. 3: Class accuracies and percentage deviations for Analysis 3 based on SVM and RF  

  RF SVM 

  AB+NDVI AB+ NDVI-RE Dev. (%) AB+NDVI AB+ NDVI-RE Dev. (%) 

PD 52 64 12 56 72 16 

R 72 96 24 70 88 18 

UD 64 80 16 73 84 11 

Overall Accuracy (%) 63 80 17 71 81 10 

* AB = All bands 

5.6.4 Sensitivity Analysis using All Input Variables 

Classification from the combination of all the inputs (RapidEye bands plus NDVI plus NDVI-

RE) did not improve the accuracies over previous analysis (SVM: 68% and RF: 72%). However, 
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we further examined the importance of the red edge parameters used in this study (red-edge band 

and NDVI-RE) by ranking their mean decrease in accuracy based on RF classification. Results 

from the analysis further confirmed that NDVI-RE and red-edge band of RapidEye image 

outperformed the other input variable (NDVI, Blue, Green, Red, and Near Infrared bands of 

RapidEye image) in classifying the defoliation levels (Fig 5.3).  

 

 

Figure 5. 3: Ranking of 5 bands of RapidEye image, NDVI, and NDVI-RE using mean decrease 

accuracy for classifying levels of defoliation. 

5.7 Discussion 

One of the primary challenges in classifying insect defoliation levels using multispectral data is 

in the ability to identify significant differences in health levels visually and to spectrally 

characterize these differences. Previous studies have investigated the ability of red-edge channels 

from hyperspectral measurement to discriminate insect defoliation levels in vegetation with 

reasonable success (Adelabu et al., 2013; Coops et al., 2003; Lawrence and Labus, 2003). 

However, the cost and availability of hyperspectral data in Sub-Saharan Africa is still a 

challenge. The solution therefore lies in identifying cheap and readily available sensors with 

strategic bands that can identify the defoliation even when symptoms are not visible to the 

human eye (Adelabu et al., 2012; Zarco-Tejada et al., 2000). This study therefore, presents 

valuable evidence of application and potential of the red edge channel of RapidEye multispectral 

image information to accurately classify insect defoliation levels (Partly defoliated, undefoliated 
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and refoliating). The subtle visual difference in the canopy colour levels of UD and PD 

challenged us to consider more detailed and specific spectral-bands for classifying the three 

levels of mopane worm defoliation.  

Results from this study have shown the potential of the red-edge channel of RapidEye image in 

effectively dealing with the spectral variability that exists between the insect defoliation levels. 

For instance, when all the 5 bands of RapidEye imagery were used for classification, the overall 

accuracies, increases about 19% and 21% for SVM and RF, respectively as opposed to when the 

red edge channel was excluded. Furthermore, the results of the McNemar test over all the 

analyses shows that there are significant differences when the red-edge feature is included as 

opposed to when it is excluded.  

The results of this study are comparable to the results obtained in previous defoliation 

classification using hyperspectral datasets (Adelabu et al., 2013; Carter and Knapp, 2001; Coops 

et al., 2003; Lawrence and Labus, 2003; Somers et al., 2010). For example Lawrence and Labus 

(2003) used sub-canopy spatial resolution hyperspectral imagery for differentiating Douglas-fir 

trees attacked by the Douglas-fir beetle. They found the region between 700 and 750 nm proved 

to be the best for discriminating the affected and unaffected trees. Recently, ground-based 

hyperspectral data was used for insect defoliation levels classification and obtained an overall 

accuracy of 82.42% observing that 7 of the 8 most important bands were found in the red-edge 

region (Adelabu et al., 2013). The study done by Carter and Knapp (2001) observed that the 

optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur 

in leaves can be explained by insect induced defoliation. Furthermore, Coops et al. (2003) 

classified three levels of Dothistroma needle blight defoliation with an accuracy of over 70% 

using Hyperspectral airborne remote sensing imagery (CASI-2). The authors identified the red-

edge region of the CASI image for classifying the tree levels of defoliation. Finally, Somers et 

al. (2010) classified different levels of defoliation using EO-1 Hyperion data and they also 

observed that the red-edge region is highly important for defoliation from different source. What 

is therefore unique in this study, is that the red edge-edge was derived from a multispectral 

sensors compared to all the above mentioned studies that used hyperspectral data.  

Previous studies have explained that plants under defoliation display a decrease in canopy 

reflectance in the lower portion of the near infrared, a reduced absorption in the chlorophyll 
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active region, and subsequently a shift in the red edge (Adelabu et al., 2014; Cho and Skidmore, 

2006). For instance, (Schuster et al., 2012) observed that when conducting land-use 

classification, classes with vegetation tend to increase accuracies with inclusion of red-edge 

channel.  Although chlorophyll content was not measured in this study, it is plausible to say that 

wavelengths near 700 nm are the most sensitive to small changes in chlorophyll concentration 

(Carter and Knapp, 2001; Gitelson et al., 2006; Schuster et al., 2012). Sims and Gamon (2002), 

for example, found that reflectance near 705 nm was sensitive to chlorophyll changes 

irrespective of leaf structure and developmental stage.  

With regards to the vegetation indices, the present study shows that NDVI-RE is highly capable 

of discriminating the health levels of insect defoliation. Result showed an increase in overall 

accuracy of 23% and 32% for both RF and SVM, respectively when the NDVI-RE was used as 

compared to NDVI. Similarly, there was an increase of 17% and 10% in the overall accuracy for 

RF and SVM, respectively when the NDVI-RE was added as an additional feature rather than 

NDVI.  The sensitivity analysis also showed that NDVI-RE and red edge band performed better 

than the other inputs. This is because red edge indices are constructed with bands sensitive to the 

chlorophyll content and internal structure of the leaf, and therefore have proven to be closely 

related to foliage biomass quantity, growth and developmental stage and health status of the 

plant (Gitelson and Merzlyak, 1994; Sims and Gamon, 2002) .  

5.8 Conclusions 

Based on our results, the application of a satellite platform that provides red-edge band 

information appears promising for the development of insect defoliation early warning system 

and health level classification for forest management. The focus of much of this work was to use 

relatively rapid and low cost new generation multispectral images for the classification of forest 

health levels induced by insect defoliation as part of large scale monitoring by forest 

management agencies (Bennett and Tkacz, 2008). The result from the present study is critical for 

early warning, detection, and monitoring of insect defoliated forest at large scale level in sub-

Sahara Africa even with minimal cost. Furthermore, the result can be used for the development 

of models that can analyse the relationship between spectral reflectance values and biophysical 

variables such as Nitrogen and to ultimately predict future health levels of forest induced by 
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insect defoliation. Although, the study did not aim at choosing the best classifier (RF or SVM) 

for insect defoliation classification, it is however recommended that the strength and 

dependability of these classifiers should be carried out for validation purpose. 
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 ABSTRACT 

In the present study, the strength and reliability of internal accuracy estimate built in random 

forest (RF) ensemble classifier was evaluated. Specifically, we compared the reliability of the 

internal validation methods of RF with independent datasets of different splitting options for 

defoliation classification. Furthermore, we set out to statistically validate the best independent 

split option for image classification using RF and multispectral imagery (RapidEye). Results 

show that the internal accuracy measure yields comparable results with those derived from an 

independent test data set. More important, it was observed that the errors produced by the 

internal validation methods of RF were relatively stable as statistically shown by the lower 

confidence interval obtained as compared to the independent test data. Results also showed that 

the 70%-30% split option had the lowest mean standard errors (0.2351) and hence highest 

accuracy when compared to the other split options. The study confirms the reliability and 

stability of the internal bootstrapping estimate of accuracy built within the Random forest 

algorithm. 

 

Keywords: accuracy, random forest, confidence level, validation 
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6.1 Introduction 

A bootstrap aggregation algorithm, random forest (RF) (Breiman, 2001) was built to hold 

multiple classification trees that are constructed based on random subset of samples derived from 

the training data (Adam et al., 2009) (Further description of RF is provided in the methodology 

section). However, there have been debates in remote sensing on whether to use the RF internal 

validation technique only or to use an independent test data set for assessing the accuracy of the 

RF predictive model. Previous studies have shown that in other to evaluate the prediction of an 

algorithm, the use of a large independent test dataset that was not used initially for training is 

recommended (Adam and Mutanga, 2010; Congalton and Green, 1999). However, when the data 

are limited some types of cross-validation techniques are usually carried out (Hawkins et al., 

2003). In the RF algorithm, the out of bag (OOB) estimate of error is considered to be such a 

type of cross-validation technique (Breiman, 2001). The internal validation proponents argue 

around the assertion that the internal validation in RF is relatively stable and reliable. While 

previous studies such as Lawrence et al. (2006), Adam et al. (2011), Breiman and Cutler (2012) 

and Waske et al. (2007) have supported this claim, others such as Bylander (2002), Ruiz-Gazen 

and Villa (2007), Statnikov et al. (2008), Strobl and Zeileis (2008) and Menze et al. (2009) have 

contested the validity of this claim. For instance, Lawrence et al. (2006) used hyperspectral 

imagery to map invasive species and found out that internal validating assessment techniques of 

RF  and independent dataset which was used for independent accuracy assessments, were within 

on average 3% apart, and most estimates were less than 1% apart.  

Furthermore, in an experiment to support the reliability of the internal error of RF for accuracy 

assessment, Mutanga and Adam (2011) compared independent test dataset with the internal 

accuracy assessment of RF in discriminating papyrus and its co-existing species. They found that 

there was no significant difference between the independent test error and the internal error 

estimates. Similar results were obtained by Breiman and Cutler (2012) where they observed the 

same trend in the independent test errors and RF internal error estimates for classification. 

Nevertheless, those that opposed the reliability of the internal error estimates based their 

arguments on RF internal validation technique to overestimate generalization error. Most 

importantly and as observed by Ruiz-Gazen and Villa (2007) and substantiated by Strobl and 

Zeileis (2008) and Mitchell (2011), RF internal validation is not stable when performed severally 

even with constant ntree and mtry. 
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There are several drawbacks with regards to those who support and oppose the reliability of the 

RF internal validation for remote sensing classification. For instance, the opponents of its 

reliability have only used dataset other than remote sensing in advocating their claims. Whereas, 

the proponents of this claim that have used remote sensing data was only done by splitting the 

initial dataset into two subsets: training dataset (used for classification) and testing dataset (used 

for independent validation). The question that arises as a result of this will therefore be, (i) will 

the internal validation in RF be stable and reliable when using remote sensing data? and (ii) will 

the error produced by the internal validation in RF be the same when compared with independent 

dataset derived from different splitting options?. Furthermore, there is no agreement on the 

percentage of dataset to be used for training and test data set to independently validate the 

internal validation in RF for remote sensing classification. Liu et al. (2013) observed that the 

splitting quality is the performance bottleneck of RF construction. In this regard and for better 

image classification accuracies, it is therefore necessary to focus more effort on the splitting 

strategies for RF construction. Therefore, the present study aims at examining the reliability and 

stability of RF internal validation with independent dataset when split over different options for 

insect defoliation mapping using multispectral RapidEye Image.  

6.2 Methodology 

6.2.1 Overview 

The process of achieving the objectives set out in this study involves three main parts: pre-

processing of data, classification and statistical analysis. Fig 6.1 describes the connection 

between these components and shows the way the three different validation techniques were 

employed.  
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Figure 6. 1: Schematic overview of the validation techniques and the processed used in this 

study. 

6.2.2 Remotely Sensed Data Acquisition and Pre-Processing 

The RapidEye imagery used in this study was acquired on 25 January 2012. The RapidEye data 

set is composed of 5-band multispectral imagery with 5 m ground sampling distance (GSD). The 

five bands include: blue (440 – 510 nm), green (520 – 590 nm), red (630 – 685 nm), red-edge 

(690 – 730 nm) and near-infrared (760 – 850 nm). The imagery over the study area contained 0% 

cloud cover, with a relatively clear atmosphere. Previous experiments performed by Naughton et 

al. (2011) verified that the image registration was within a single pixel, hence no further 
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geometric processing was applied. The image was atmospherically corrected using the quick 

atmospheric correction procedure in ENVI 4.7 (ENVI, 2006). The field data acquisition was 

conducted during the summer month of January 2012, coinciding with the image acquisition 

date. Three different defoliation levels namely: Undefoliated (UD), Partly defoliated (PD), and 

Refoliating (R) were identified within the study area in Palapye, Botswana. The area was chosen 

because heavy defoliation has been reported in the area over the past few years (Sebego et al., 

2008). Intensive field work was conducted with the help of ecological experts to identify areas 

that are associated with constant insect (mopane worm) defoliation. Visual observation shows 

that the time series of defoliation in mopane woodland are in terms of its canopy impacts.While 

UD represents time before defoliation, PD and R represent during and after defoliation 

respectively. In the healthy non-impacted Mopane canopies (UD), leaves are distinctive, 

consisting of two large triangular leathery leaflets, sometimes likened to butterfly wings. 

Although the PD canopies appear green, they may be visually indistinguishable from UD 

canopies except for the part eaten by the worms. Leaves become pale green gradually in PD state 

leading to total defoliation. However, after total defoliation takes place, new shoots (refoliating 

canopy) also spring out usually after 2 weeks. 

It is important to note that while other factors such as drought and wind can also contribute to 

defoliation, it is difficult to spectrally differentiate between insect and other environmental 

factors induced defoliation. However, Mopane worm defoliation is different from drought or 

wind induced defoliation in that defoliation follows good-healthy growth patterns that would 

otherwise not occur if there was a severe drought or wind. Moreover, insect defoliation occurs in 

patches (within the healthy forests) but drought or wind would impact on all vegetation. 

Furthermore, insect defoliation in Mopane woodland mainly occurs in the summer (November-

April; rain season) after which defoliated plants come to leaf for the second time. The normal 

drought or wind induced defoliation for deciduous trees occurs in winter therefore making it 

easier to detect insect defoliation during summer in Mopane woodland. Nevertheless, we 

assumed that in our study drought is constant over a wide area and by restricting our 

measurements to the period immediately after defoliation, we increased the chances of capturing 

the worm effect. 

An experiment was designed using 255 sample random points that were generated from an 

existing land cover map of the study area using Hawth’s Analysis Tool (HAT) in ArcGIS 9.3 
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resulting in 85 sample points for each defoliation levels (Sebego and Arnberg, 2002).  A 

handheld Garmin eTrex30 GPS (± 3m accuracy) was then used to navigate to the 85 field 

measurements for each defoliation levels. Thereafter, defoliation plots were created around the 

centred point in which 80% of the trees are said to belong to a particular defoliation level. The 

defoliation plot was defined as covering 20 m × 20 m resulting in 84 defoliation plots for each 

defoliation level. Thereafter, the defoliation plots were then overlaid on the true colour 

composite RapidEye image for extraction of the pixels spectra (5 m × 5 m)  using Environment 

for Visualizing Images (ENVI) software (ENVI, 2006). The metadata such as the site description 

(coordinates, altitude and land cover class) and general weather conditions were also recorded. 

6.2.3 Classification 

6.2.3.1 Random Forest Classifier 

Random forest (RF) machine learning algorithm was employed in this study to classify the three 

levels of defoliation (UD, PD, R). RF is a machine learning algorithm that employs a bagging 

(bootstrap aggregation) operation where a number of trees (ntree) are constructed based on a 

random subset of samples derived from the training data. Each tree is independently grown to 

maximum size based on a bootstrap sample from the training data set without any pruning, and 

each node is split using the best among a subset of input variables (mtry) (Breiman, 2001). The 

multiple classification trees then vote by plurality on the correct classification (Adelabu et al., 

2014; Lawrence et al., 2006). In the forest building process, when bootstrap sample set is drawn 

by sampling with replacement for each tree, about 1/3
rd

 of original instances are left out. This set 

of instances is called OOB (out-of-bag) data. Each tree has its own OOB data set which is used 

for error estimation of individual tree in the forest and by averaging the OOB error rates from all 

trees, the random forest algorithm gives an error rate called the OOB classification error for each 

input variable (Breiman, 2001). 

According to Kulkarni and Sinha (2013) the OOB error (OOBE) of Random Forest is given as, 

OOBE = P x,y (mg(X,Y)) < 0 

Where mg(X,Y) is Margin function. The Margin function measures the extent to which the 

average number of votes at (X, Y) for the right class exceeds the average vote for any other class 

and it is directly proportional to confidence (P) in the classification. Where X is the predictor 

vector and Y is the classification.  



106 
 

In the present study, two different sets of data were input into the RF model. Firstly we used the 

whole dataset (n = 255) for different defoliation classes into the RF classifier with the aim of 

allowing RF to classify the defoliation levels and produce internal validation results (OOB).  The 

second set of input is the different split options in which a percentage of the whole data was used 

for classification while the other subset was set aside for independent validation. Each of the 

splitting options was iterated 100 times while the internal bootstrapping of RF was also repeated 

100 times to ensure that all observations were selected in the validation sub-sample. For each 

iteration, accuracy was assessed using standard error matrices (OOB error rate). The goal of this 

study was not to produce the best classification results, but rather to evaluate the reliability of 

internal validation and to better assess classification error and bias within the sample set while 

applying RF classification algorithm. Consequently, the OOB error rate of the test data of the 

split options was only compared to the OOB error rate obtained when the whole dataset was 

used. A brief description of the applied strategies is given in Table 6.1. Further description of RF 

can be found in (Breiman, 2001) and (Horning, 2010). All analysis was done in R statistical 

software (R Development Core Team 2008).  

Table 6. 1: Overview of the size of training and test sample subsets for the validation techniques 

used in this study. 

Methods Options Training Sample size Testing Sample Size Repetition 

 

20-80 17 67 100 

 

30-70 25 59 100 

 

40-60 34 50 100 

Split Sample 50-50 42 42 100 

 

60-40 50 34 100 

 

70-30 59 25 100 

 

80-20 67 17 100 

Internal RF bootstrapping 

 

* * 100 

* Internal RF bootstrapping split its Training and Test dataset randomly  

6.2.4 Statistical Analysis 

For each option and in all the techniques used in this study, standard error rates were recorded 

after the classification. The mean and the confidence level at 95% significance level were 

calculated and recorded. The confidence level was the preferred statistical measure of 

differentiating between the errors produced from each of the technique used because it has been 

proved to be the most conventional way to assess the degree of certainty in data analysis 
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(Mutanga and Skidmore, 2004a). A one way analysis of variance (ANOVA) and Turkey post-

hoc tests were executed between errors produced from the split options and internal 

bootstrapping of RF. This was done to ascertain if the errors produced from the classification by 

the split options and internal validation in RF are comparable. 

6.3 Results  

The summary statistics of the standard errors from the classification iterations of each validation 

techniques are given in Table 6.2. Results, shows that while the lowest standard error rates 

(0.098) was observed in the 80% - 20% split option, the mean error rates after repeating the 

classification 100 times was significantly higher (0.275) and the standard deviation was even the 

highest (0.105) of all the split options used in this study. 

Table 6. 2: Descriptive statistics of standard errors produced after classification using the 

validation techniques. 

Method Option (%) Minimum Maximum Mean Std. deviation 

 

20-80 0.101 0.467 0.321 0.100 

 

30-70 0.103 0.487 0.208 0.082 

 

40-60 0.132 0.454 0.261 0.078 

Split Sample 50-50 0.135 0.437 0.259 0.077 

 

60-40 0.129 0.406 0.248 0.074 

 

70-30 0.132 0.355 0.235 0.048 

 

80-20 0.098 0.496 0.275 0.105 

Internal RF bootstrapping  

 

0.207 0.257 0.232 0.010 

 

The conclusion from the ANOVA test for the split options is that they are significantly different 

(p < 0.001). However, One-way ANOVA only shows that there is significant difference between 

the split options but it does not show which pairs are different. We therefore, used a Turkey post-

hoc test to determine if there are any differences between the different split options (Table 6.3).  
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Table 6. 3: P values of the Turkey post Hoc test performed to compare the errors produced from 

different splitting options 

 

20-80 30-70 40-60 50-50 60-40 70-30 80-20 

RF 

Validating 

20-80 1 < 0.0001 0.002 0.005 < 0.0001 < 0.0001 0.034 < 0.0001 

30-70 < 0.0001 1 0.000 < 0.0001 0.011 0.034 < 0.0001 < 0.0001 

40-60 0.002 0.000 1 1.000 0.975 0.877 0.010 0.806 

50-50 0.005 < 0.0001 1.000 1 0.902 0.722 0.010 0.877 

60-40 < 0.0001 0.011 0.975 0.902 1 1.000 0.006 0.902 

70-30 < 0.0001 0.034 0.877 0.722 1.000 1 0.036 0.975 

80-20 0.034 < 0.0001 0.010 0.010 0.006 0.036 1 0.002 

RF Validating < 0.0001 < 0.0001 0.806 0.877 0.902 0.975 0.002 1 

* Highlighted values are significantly different. 

Results from Table 6.3 showed that from the P values of the Turkey post-hoc test, there were 

significant differences between 20% -80% and other split options. The same trend was observed 

from the 30% -70% and 80% -20% split options. There was however no significant difference at 

95% significance level between and among 40% -60%, 50% -50%, 60% -40% and 70% -30% 

split options indicating that any of these could be used for validating classification. However 

since we still determined to choose the best from the sample options, we derived the confidence 

level at 95% significance level as shown in Fig 6.2. 



109 
 

  

Holdout 20-80

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Error rate

0

5

10

15

20

25

30

35

40

45

50

F
re

q
u

e
n
c
y

Mean = 0.3244
CL = 0.0236

 

Holdout 30-70

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Error rate

0

10

20

30

40

50

F
re

q
u

e
n

c
y

Mean = 0.2132

CL = 0.0197

 
Holdout 40-60

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error rate

0

5

10

15

20

25

30

35

F
re

q
u

e
n
c
y

Mean = 0.2606
CL = 0.0153

 

Holdout 50-50

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Error rate

0

5

10

15

20

25

30

35

F
re

q
u

e
n

c
y

Mean = 0.2594

CL = 0.0151

 
Holdout 60-40

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Error rate

0

5

10

15

20

25

30

35

F
re

q
u

e
n

c
y Mean = 0.2479

CL = 0.01447

 

Holdout 70-30

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38

Error rate

0

2

4

6

8

10

12

14

16

18

20

F
re

q
u

e
n

c
y

Mean = 0.2351

CL = 0.0094

 



110 
 

Holdout 80-20

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Error rate

0

2

4

6

8

10

12

14

16

18

20
F

re
q
u
e
n
c
y

Mean = 0.2749
CL = 0.021

 

Internal RF Bootstrapping

0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28

Error rate

0

50

100

150

200

250

300

350

400

F
re

q
u
e
n
c
y

Mean = 0.2319
CL = 0.0006

 
Figure 6. 2: Histogram showing the frequency of standard error produced after classification for different holdout options 
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A comparison of the confidence level (CL) from all the splitting options showed that a much 

narrower distribution (CL = 0.0094) was observed from the standard errors produced from 70% -

30% holdout option than other options. Moreover, the 70% -30% has the lowest mean standard 

errors (0.2351) and hence highest accuracy when compared with the other three (40% -60%, 

50% -50%, 60% -40%). Therefore, we conclude that the 70% -30% split option gives better and 

more robust output. We compared this holdout option (70% -30%) with the internal 

bootstrapping of RF with the aim of testing the reliability of the latter and choosing the best for 

validating defoliation levels classification (Table 6.4). 

Table 6. 4: P values of the Turkey post Hoc test performed to compare the errors produced from 

between the best splitting option and internal bootstrapping of RF 

 

70-30 internal bootstrapping of RF 

70-30 1 0.086 

Internal RF bootstrapping 0.086 1 

* Highlighted values are significantly different. 

Results from Table 6.4 showed no significant difference (95% significance level) between 

internal bootstrapping of RF and the independent 70% -30% split option. This indicate that the 

internal bootstrapping of RF performed just as the best independent split option with even lower 

CL (0.0006) and mean standard errors (0.2319).  

6.4 Discussion  

Collection of ground reference data after insect defoliation for classification is an expensive and 

complex task especially in semi-arid African environment thereby making allocation of training 

and test samples for classification a mammoth task. Moreover, most of the remote sensing data 

in semi-arid area exhibit large heterogeneities due to different factors such as time of collection, 

soil types, sensors or viewing/illumination geometrics. Therefore validation techniques are 

important for generalization and independent validity of remote sensing classification (Richter et 

al., 2012).   

The present study aimed at testing the reliability of the bootstrapping estimates of accuracy of 

RF with respect to insect defoliation levels classification. Additionally, we sought to choose the 

best split option for independently validating remote sensing classification of defoliation levels. 
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The results of the present study indicate that extremes split i.e. low training - high test and high 

training - low test data is not a reliable accuracy assessment measure. While previous studies 

have randomly preferred the 60%-40% and 70%-30% split options (Adam and Mutanga, 2010; 

Adelabu et al., 2014), the reasons behind this have not yet been discussed. Our studies have 

shown that when the number of training samples is relatively small with respect to the number of 

test samples, the standard error produced becomes larger and hence accuracy becomes lower. 

Moreover, when the classification was repeated 100 times, the classification errors of the 

extremes splits were not stable as can be observed from their confidence level at 95% 

significance level. The reason for this is because of the well-known problem of dimensionality 

resulting in the risk of over-fitting of the training data that can lead to poor generalization 

capabilities of the classifier (Dieterle, 2003; Richter et al., 2012). From all holdout options tested 

in this study, 70% -30% split option yielded the lowest standard error rates. The study has shown 

that, similar to other studies (Rodriguez-Galiano et al., 2012; Stumpf and Kerle, 2011) a the use 

of split lower than 60% -40% or greater than 70% -30% for defoliation classification is not 

recommended.  

The evaluation of the stability and reliability of the internal estimates of accuracy of RF in this 

study supported the assertion that these estimates are relatively stable and reliable. Of the two 

validation techniques tested in this study, the internal estimates of accuracy produced the lowest 

mean error (0.2319) and hence the highest accuracy. Furthermore, internal estimates of accuracy 

gave the lowest CL indicating that the errors were relative stable. This supports the assertion 

that, with internal estimates of accuracy in RF, it is not necessary to have a separate accuracy 

assessment data set.  

As observed in this study, the internal estimate of accuracy of RF was able to provide reasonable 

lower error rates using small datasets for classification in this study. The internally generated 

out-of-bag accuracy assessments were shown to be reliable, potentially obviating the need to 

collect separate assessment data. The implementation of RF in the R statistics package (as the 

randomForest package) makes it available to analysts free of charge. We believe, based on our 

relatively lower error rates obtained, ease of use, low cost, and possibly no need for independent 

accuracy assessment, it is worth considering RF for remote sensing defoliation classification 

problems in the future. In this aspect, our result is consistent with that obtained by Lawrence et 
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al. (2006) who found that the accuracy assessment using OOB is nearly identical to an 

independent accuracy assessment.  

6.5 Conclusions 

The following conclusions were obtained in this study:  

1. The use of split lower than 60% -40% or greater than 70% -30% for defoliation 

classification yield unstable and therefore unreliable results. 

2.  As observed from this study, the 70%-30% independent split option is recommended for 

defoliation classification using RF machine learning algorithm 

3.  The internal bootstrapping estimates of accuracy in RF are relatively stable and hence 

reliable  

4. With the combination of efficiency and accuracy, along with very useful analytical tools, 

the Random Forest classifier should be considered very desirable for defoliation levels 

classification of remote sensing especially in areas with limited sample size. 

Although, the results from this study requires further investigation for other defoliators and 

environments, the study intends to stimulate the remote sensing community (especially those 

involved in defoliation detection, classification and monitoring) towards agreeing on the 

exploitation of validation techniques for mapping defoliation. A general agreement on this will 

help to better compare results of defoliation classification from different studies and other parts 

of the world. Furthermore, there is urgent need for testing the validation of these techniques in 

other terrain as increasing measuring and modeling activities carried out in different areas are 

becoming apparent and in view of the upcoming satellite earth observations missions. 
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CHAPTER SEVEN 

Estimating Biophysical Variable of Insect Defoliated Canopies Using 

Radiative Transfer Models 
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S. Adelabu, O. Mutanga, M.A. Cho, (In Preparation), “The use of radiative transfer models to 

estimate LAI of insect defoliated canopies”. 
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ABSTRACT 

In the present study, LAI was estimated for different defoliation levels based on data simulated 

from RapidEye image. We sought to examine if LAI could be used for discriminating different 

levels of insect defoliation. The PROSAILH radiative transfer model was inverted with canopy 

spectral reflectance extracted from RapidEye imagery by means of look-up-table (LUT). 

Additionally, estimated LAI was compared with bands of RapidEye and selected indices. Results 

show that the estimated LAI was in the range of those reported in the literature. The NDVI-RE 

index was the most strongly correlated with the estimated LAI as compared with other variables 

(RapidEye bands and NDVI). Our results further confirm the potential of model inversion for 

estimating vegetation biophysical parameters of relative homogenous forest using new 

generation multispectral imagery. 
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7.1 Introduction 

The alliance between remote sensing and biophysical indicators is valuable for studies on 

detecting, mapping and monitoring defoliation process in forests. Among the many biophysical 

indicators, leaf area index (LAI) is of prime importance because it is a vital variable for 

explaining canopy primary production and can be used to infer processes such as photosynthesis, 

transpiration, evapotranspiration and estimate net primary production (NPP) of terrestrial 

ecosystems (Yao et al., 2008). LAI is defined as one-half the total surface area of leaves per unit 

ground area (Adelabu et al., 2012). Relationship between biophysical characteristics such as LAI 

of canopies and reflectance has previously been studied with great success (Asner, 1998; 

Atzberger, 2004; Richter et al., 2012; Ustin et al., 2009). Estimating LAI from remote sensing is 

therefore derived from the knowledge of this relationship (empirical) or radiative transfer (RT) 

inversion model (Rullan-Silva et al., 2013).  

The empirical method involves the use of statistical analysis to derive the correlation between 

observed LAI and canopy reflectance. However, empirical methods are usually reliant on the 

site, the type of sampling used and remote sensing sensor employed (Colombo et al., 2003; 

Meroni et al., 2004). Nevertheless, scientists have carried out studies in the last decade to 

advance the estimation of LAI from the relationship between observed LAI and canopy 

reflectance using different remote sensing datasets and techniques. This included the 

development of vegetation indices (Darvishzadeh et al., 2009), angle indices (Khanna et al., 

2007) and red edge position (Cho et al., 2008). Yet, estimating LAI using the empirical method 

still face a lot of challenges with regards to the collection of datasets needed for model 

adjustment resulting in high cost and rigorous use of labour (Richter et al., 2011). 

However, the RT model approach assumes that the changes in canopy reflectance and soil 

background could be accurately described using physical laws through the interaction and 

transfer of radiation inside the canopy. This assertion offers the reason behind the relationship 

between canopy biochemical and biophysical relationship and the canopy reflectance (Houborg 

et al., 2007). For RT models, LAI is usually an input variable for describing the relationship 

between canopy and solar light (Bacour et al., 2006). Nevertheless, in order to use RT models for 

estimating LAI, their inversion is highly recommended (Kimes et al., 2000). To this end, 

researchers have developed various techniques such as artificial neural networks (Schlerf and 
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Atzberger, 2006; Weiss and Baret, 1999), support vector machines regression (Durbha et al., 

2007), numerical optimization methods (Jacquemoud et al., 1995; Meroni et al., 2004) and look 

up table (LUT) (Combal et al., 2002; Weiss et al., 2000) approaches for inverting the RT 

models. Several studies in the past have used RT inversion models for different remote sensing 

applications with great success (Asner et al., 1998; Houborg et al., 2007; Jacquemoud et al., 

2009; Kimes et al., 2000).  

Nevertheless, some shortcomings of RT inversion models have been reported in the literature. 

For instance, Richter et al. (2011) observed that RT inversion model requires extensive 

parameterization as well as high computational demand. The authors further observed that some 

RT inversion models may be too simplistic to handle composite canopies especially those in the 

semi-arid areas which are often affected by soil background. Combal et al. (2002) further 

observed that when performing RT inversion model, the combination of input parameters may 

produce similar reflectance values, causing high variation and uncertainties in the derived 

characteristics of the vegetation. This challenge could however be solved by creating some 

control on the inversion process and by having initial understanding of the model parameters 

(Combal et al., 2002). Recently, however, attention has shifted to the use of RT inversion 

approach on simulated data as data collection becomes more and more difficult to collect 

especially in developing world (Weiss et al., 2000). 

 Although, advances have been made in the use of hyperspectral (Adelabu et al., 2014) and 

multispectral (Adelabu et al., 2013) dataset for discriminating insect defoliation levels, the 

knowledge of biophysical variables such as LAI may help to understand the influence of the 

insects on the canopy at each of the defoliation levels. Furthermore, better understanding of the 

relationship of LAI with canopy reflectance at different defoliation levels could help resource 

managers to know the impacts, the vulnerability and the extent of defoliation and hence suggest 

possible management practices that will enable efficient and sustainable use of the resources 

emanating from woodland in Africa. This will further support scientific knowledge of 

environmental management practices and food security in Africa and other sites around the 

world sensitive to global changes.  

Therefore, the aim of the present study is to estimate LAI of canopies at different insect 

defoliation level using a well-established canopy reflectance models, parameterized to represent 
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a wide range of canopy characteristics. Specifically, we set out to use simulated data derived 

from RapidEye image to estimate LAI by inverting the canopy radiative transfer model 

PROSAIL H (Jacquemoud et al., 2009) at different defoliation levels. This allowed us to 

synthetically create artificial LAI measurements that otherwise would have been difficult and 

expensive to obtain under experimental or field conditions (Cho et al., 2008). Additionally, we 

established the relationship between RapidEye bands, some selected vegetation indices and the 

estimated LAI. This allowed us to understand the role of each of the bands and indices in 

estimating LAI at different defoliation levels. 

7.2 Materials and Methods 

7.2.1 Study Area and Field Campaign  

The study is located in and around the Palapye/Tswapong axis of Central Region of Botswana 

(Longitude 27
o
00’ E- 27

o
33’ and Latitudes 22

o
23’ - 22

o
52’ S).  It is situated along the main 

north-south highway and is about 230 km north of Gaborone, the capital city of Botswana 

(Sebego et al., 2008). The study area is covered mainly by mopane (Colophospermum mopane) 

bushveld because mopane tree is found in all its growth forms and is locally monospecific. The 

value of mopane woodland in Botswana alone has been estimated at US $3.3 million per annum, 

of which approximately 40% goes to producers who are primarily poor rural women (Sebego et 

al., 2008). However, a number of factors have of late, brought the sustainability of the mopane 

woodland resources into question. One of such factors is the difficulty in monitoring defoliation 

process within the woodland. The canopies of Colophospermum mopane are usually defoliated 

by edible caterpillars popularly called mopane worms (Adelabu et al., 2012). This has resulted 

not only in the depletion of woodland resources in most rural areas but also low vitality and 

productivity of the woodland (Makhado et al., 2012). The depletion of the worms has been 

reported in the study area over the past few years with heavy defoliation occurring (Sebego et al., 

2008).  

Three primary categories of canopy impact ranging from non-impacted undefoliated plants (UD) 

to partly defoliated plants (PD) and finally refoliating plants after severe defoliation (R) at 

different sites of the study area were identified during the field campaign. The UD represents 

time before defoliation, PD and R represent during and after defoliation respectively. In the 
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healthy non-impacted Mopane canopies (UD), leaves are distinctive, consisting of two large 

triangular leathery leaflets, sometimes likened to butterfly wings (Adelabu et al., 2014).. 

Field campaign was done during the January 2012 defoliation window. Random Points that were 

generated from an existing land cover map of the study area using the Hawth’s Analysis Tool 

(HAT) in ArcGIS 9.3 (Sebego and Arnberg, 2002). Thereafter, the respective points were 

navigated to using a handheld Garmin eTrex30 GPS. Defoliation plots were created around the 

centered point in which 80% of the trees are said to belong to a particular defoliation level. The 

defoliation plot was defined as covering 20 m × 20 m resulting in 80-84 defoliation plots for 

each defoliation level. The defoliation plots were then used to create training area and then 

overlaid on the true colour composite RapidEye image for extraction of the pixels spectra (5 m × 

5 m)  using Environment for Visualizing Images (ENVI) software (ENVI, 2006). The metadata 

such as the site description (coordinates, altitude and land cover class) and general weather 

conditions were also recorded.  

7.2.2 Remote Sensing Imagery: Acquisition and Processing 

High multispectral RapidEye image employed in this study was acquired on 25 January 2012. 

RapidEye images come with 5 multispectral bands with 5 m ground sampling distance (GSD). 

The five bands include: blue (440 – 510 nm), green (520 – 590 nm), red (630 – 685 nm), red-

edge (690 – 730 nm) and near-infrared (760 – 850 nm). The imagery over the study area 

contained 0% cloud cover, with a relatively clear atmosphere. Results of previous research by 

Naughton et al. (2011) verified that the image registration was within a single pixel, hence no 

further geometric processing was applied. The image was atmospherically corrected using the 

quick atmospheric correction procedure in ENVI 4.7 (ENVI, 2006). Two popular vegetation 

indices: Normalized difference vegetation index (NDVI) derived from band 3 and band 5 and the 

red-edge adaptation of NDVI derived from band 4 and band 5 of the RapidEye image were used 

in this study. Because of the difference in transmittance and reflectance of infrared and near-

infrared energy between photosynthetic and non-photosynthetic plant material, there has been a 

great deal of interest in relating LAI to various spectral measurements that could be gathered by 

earth orbiting satellites. One of the more promising ratio-based indices is the normalized 

difference vegetation index (NDVI).  
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NDVI (Tucker (1979)) has previously been shown to be sensitive to LAI for defoliated areas and 

the relationships between LAI and satellite-based measurements such as NDVI have been used 

to drive productivity models applied over large domains (Carter and Knapp, 2001; Gupta et al., 

2003). It has however been noted that, NDVI is usually influenced by soil status, and this effect 

is especially greatest in areas with low vegetation cover such as semi-arid area (Fan et al., 2007). 

Therefore as an alternative to NDVI, we tested the relationship between the NDVI-RE and LAI 

with the aim of checking if either could be used for estimating LAI in an effective, fast and 

nondestructive way in semi-arid woodland. 

7.2.3 The PROSAIL H Radiative Transfer model 

The combination of PROSPECT (Jacquemoud and Baret, 1990) and SAILH (Kuusk, 1991; 

Verhoef, 1984) transfer model were used to simulate synthetic reflectance spectra extracted from 

the RapidEye imagery at different defoliation levels. The combination (PROSAILH) have been 

widely used and validated, produces realistic results of bidirectional reflectance spectra for 

different canopies as reported by several researches (Cho et al., 2008; Jacquemoud et al., 2009). 

For this reason it was preferred over other radiative transfer models where the canopy is 

explained in a complex way. The PROSPECT model calculates reflectance and hemispherical 

transmittance as a function of the leaf structural parameter N (unitless); the leaf chlorophyll 

content a+ b LCC (µgcm
-2

); the dry matter leaf dry matter content, Cm (gcm
-2

) and the 

equivalent water thickness Cw (cm) (Jacquemoud et al., 2009). The transmittance and 

reflectance estimated in PROSAIL are input into the SAILH model. 

The SAILH model is based on the turbid assumption and describes the canopy structure in a 

fairly simple way (Kuusk, 1991). In this study we used SAILH model to simulate bi-directional 

canopy reflectance (p) because it requires few input variables and also has a predictive power 

similar to more elaborated reflectance models (Jacquemoud et al., 2009). According to Cho et al. 

(2008), SAILH assumes the canopy to be a homogenous semi-finite medium with Lambertian 

leaves characterized by their reflectance and transmittance spectra (pleaf, tleaf). Apart from the 

reflectance and transmittance, SAILH requires eight input parameters to produce canopy bi-

directional reflectance. These are hotspot parameter (HSP; unitless); average leaf angle (ALA; 

degrees), leaf area index (LAI; unitless); sensor viewing angle (Ø0; degrees); azimuth angle (Øa; 

degrees); fraction of diffuse incoming solar radiation (skyl); soil background reflectance (rsl) and 
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solar zenith angle (Øz). To account for changes in soil brightness, we employed soil brightness 

parameter (scale) as described by Atzberger (2004). However, as observed by Cho et al. (2008), 

the soil brightness is not the only parameter to be considered for RT models, the changes in the 

spectral shape due to variations in the chemical composition of the soil (e.g. soil carbon) needs to 

be considered too.  Therefore when the two models are combined, 12 input parameters are to be 

specified. Four of the 12 parameters were fixed (sun zenith angle, azimuth angle sensor viewing 

angle and fraction of incoming solar radiation). The other eight parameters were randomly 

generated (Table 7.1). For all simulations, a nadir looking sensor was assumed (Ø0 = 0
o
). The 

fraction of diffuse illumination (skyl) was fixed to 0.1 for each of the bands of RapidEye 

imagery. A solar zenith angle (Øz) of 45
o
 was assumed.  

The PROSAILH model was inverted using a look-up table (LUT). Previous studies have shown 

that LUT is the simplest method of solving the inversion of RTM model because they permit a 

global search while showing less unexpected behavior when the spectra characteristics of the 

targets are not well represented by the modeled spectra (Darvishzadeh et al., 2008; Schlerf and 

Atzberger, 2006). In this study, 3000 parameter combinations were randomly used to build LUT 

and hence used in forward estimation of LAI from the PROSAILH model. In the present study, 

the input parameters as described above and reflectance values extracted from each defoliation 

level served as input variables into the PROSAILH model for estimating LAI at each of the 

defoliation levels. 
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Table 7. 1: Range and Distribution of Input parameters used to establish simulated canopy 

reflectance for use in LUT.  

Model parameter Abbreviation Units **Range Distribution 

Leaf Area Index LAI Unitless 0-10 Uniform 

Average Leaf Angle ALA Degrees 30-80 Uniform 

Hot spot parameter HSP Unitless 0.1±0.01 Normal 

Leaf Chlorophyll content LCC µgcm
-2

 20-80 Uniform 

Leaf dry matter content * Cm gcm
-2

 1.25xCw Uniform 

Leaf water content Cw Cm 0.004-0.044 Uniform 

Leaf structure parameter N Unitless 2±0.2 Normal 

Soil brightness scale Unitless 1±0.14 Normal 

Carbon content Cc gcm
-3

 0-6 Uniform 

* Combal et al. (2002) proposal that Cm is varied proportional to Cw was used. ** In the case 

were distribution is normal, range indicates mean ± standard deviation. 

7.2.4 Data Analysis 

The estimated LAI was tested for significant difference between the different defoliation levels 

using a one way ANOVA and Turkey Post Hoc. This was done to ascertain if the estimated LAI 

from the defoliation levels are comparable. Furthermore, we tested the interaction between the 

estimated LAI with NDVI and NDVI-RE as well as each of the 5 bands using Pearson 

correlation co-efficient which is widely used as a measure of the degree of linear dependence 

between two variables. This was done to ascertain the relationship between the bands, NDVI or 

NDVI-RE and LAI. 

7.3 Results and Discussion  

Table 7.2 shows the summary statistics of the estimated LAI at different defoliation levels. 

Results shows that mean values (PD; 4.62, UD; 5.12, R; 4.14) are within the LAI values obtained 

by other simulation studies (Colombo et al., 2003; Weiss et al., 2000). We further observed that 

the ranges of values are within those reported for different levels of severity of defoliated 

canopies in other part of the world (Asner et al., 2003a). The current study shows that there was 

19% decrease in the LAI between the UD and R levels. As a proxy for canopy density, changes 

in LAI as a result of stresses such as insect defoliation will be significance in that it determines 

the productivity of forest. Moreover, it is known that a plant is under stress when there is a 
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change in the health condition of the plant foliage (Rullan-Silva et al., 2013).  Hence, the 

healthier the vegetation, the higher the vigour and hence the higher the LAI (Adelabu et al., 

2012). Hence, a forest that is highly defoliated is expected to have low LAI as observed in this 

study. 

Table 7. 2: Descriptive statistics of the estimated LAI from the Inverted PROSAIL H RT model 

Defoliation Levels Mean Maximum Minimum Std. Dev. 

PD 4.622328 5.020619 4.233532 0.140263 

UD 5.123606 5.969437 4.494172 0.164477 

R 4.147604 4.647977 3.433718 0.170675 

 

Further analysis was however conducted to determine if there were any significant differences 

between the LAI at different defoliation levels. It was concluded that highly significantly 

different (p < 0.001) exist between the LAI estimated at different defoliation levels. However, 

this could not help in determine if there exist significant difference between one individual class 

and another. Consequently, we used a Turkey post-hoc test to determine if there are any 

differences between the different defoliation levels (Table 7. 3).  

Table 7. 3: P values of the Turkey post Hoc test performed to determine if there are any 

significant differences in the LAI estimates in between the different defoliation classes. 

 PD UD R 

PD 1 <0.001 <0.001 

UD <0.001 1 <0.0001 

R <0.001 <0.0001 1 

PD = Partly Defoliated, UD = Undefoliated, R = Refoliating 

The results from Table 7.3 confirmed the earlier results from Table 7. 2 that significant 

differences exist between the classes in terms of LAI estimates. It was however observed from 

Table 7. 3 that it was easier to discriminate the undefoliated (UD) canopies from the refoliating 

canopies (R) as compared to partly defoliated (PD) using the LAI estimates. Previous study by 

Adelabu et al. (2014) and Adelabu et al. (2013) were able to discriminate the defoliation levels at 

the same study area using hyperspectral and multispectral datasets respectively. However in both 

studies, they were unable to show if there are any significant differences between the defoliation 

classes i.e. to what extent a class differs from the other. Collantes et al. (1999) observed that 



124 
 

knowledge of how each levels of defoliation differs from each other could actually provide the 

background to which monitoring and management could be done.  

Although LAI was not measured in the field in this study, we compared our LAI derived from 

simulated data with those in the literature. For instance, Veenendaal et al. (2008) found out that 

the LAI for mopane trees range between 3.5m
2
m

-2
(short) and 5.6m

2
m

-2
 (tall). Similar results for 

mopane specie were obtained by Mantlana (2008) and Greenberg et al. (2003). For other species, 

Weiskittel and Maguire (2007) using destructive sampling method observed that the mean 

canopy LAI of Douglas fir in Oregon USA was 5.45m
2
m

-2
. Similarly, Wythers et al. (2003) used 

process oriented model to estimate LAI in a heterogeneous deciduous woody forest in Harvard 

forest. Their result shows that LAI ranges from 4.3m
2
m

-2 
to 4.7m

2
m

-2
 depending on the species. 

Moreover, Asner et al. (2003b) observed that LAI for deciduous trees range between 3.3m
2
m

-2
 to 

5.6m
2
m

-2
. With regards to estimation of LAI from remote sensing data, previous studies were 

also similar to the present study. Gonsamo (2011) used CIR colour image to estimate LAI with 

an average value of 4.5m
 2

m
-2

. Similarly, Asner et al. (2003b) analyzed collections of various 

researches on the use of MODIS LAI and observed that for deciduous forest, the mean LAI 

5.5m
2
m

-2
. Fassnacht et al. (1997) observed that for a combination of pine, oak and aspen tree 

species in a Central Wisconsin forest, the LAI estimated from Landsat TM ranges between 

2.5m
2
m

-2
 and 5.0m

2
m

-2
.  

Other studies have estimated LAI using Lidar (Lange and Solberg, 2008), and Hyperspectral 

imagery (Lange and Solberg, 2008; Richter et al., 2011)  with similar or little difference to the 

present result. The limitations of these previous studies are that attentions were focused on 

estimating LAI of groups or individual canopies rather than the health status of the canopies. 

Only few studies have related reflectance with observed LAI with the aim of evaluating different 

health levels in forest. For instance, Hall et al. (2003b) used Landsat 7 ETM+ to discriminate 

different levels of insect defoliation in aspen forest and found a very strong relationship (r = 

0.84) between estimated and observed LAI. Some other studies used simulated data from 

hyperspectral imagery to estimate LAI (Darvishzadeh et al., 2009; Darvishzadeh et al., 2008). 

This may be expensive and not readily available for researchers in sub-Saharan Africa. Our 

present study has shown that radiative transfer model such as PROSAIL with an implemented 

LUT algorithm can be used for estimating LAI from relatively cheap and readily available 
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RapidEye especially in areas where it may be difficult to validate LAI with ground based 

measurement. 

Furthermore, a Pearson’s correlation coefficient was run in order to evaluate the relationship 

between the RapidEye bands, derived vegetation indices and the estimated LAI (Fig 7.1). The 

correlation results show that RapidEye bands and the vegetation indices are positively correlated 

with the estimated LAI for the different defoliation levels although; the level of relationship 

differs from one variable to another. For instance, the NDVI-RE yielded the strongest 

relationship (Pearson correlation coefficient of 0.76) while the red band (band 2) yielded a weak 

relationship (Pearson correlation coefficient of 0.05). The result is in line with other studies that 

have conducted the relationship between LAI and reflectance from different regions of 

electromagnetic spectrum. For instance, Vina et al. (2011) observed a strong relationship 

between red-edge indices and LAI. Furthermore, Jensen (2005) observed that under stress 

induced condition, changes in LAI in the visible region is firstly noted near 700nm wavelength 

(red edge region) where there is blue shift  of  the red region. This observation therefore, 

highlights the importance of the red-edge region in estimating LAI as a proxy for detecting insect 

defoliation in forest environments.   
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Figure 7. 1: Pearson correlation coefficient of LAI and different bands of RapidEye and selected vegetation indices, A=Band 1, 

B=Band 2, C=Band 3, D=Band 4, E=Band 5, F=NDVI, G=NDVI-RE 
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7.4 Conclusions 

Leaf area index was estimated for different defoliation levels based on simulated data generated 

from RapidEye image. The results show that the estimated LAI was in the range of those 

reported in the literature. Similarly, the study observed that NDVI-RE index was strongly 

correlated with the estimated LAI when compared with other variables (RapidEye bands and 

NDVI). Although, result from the present study indicates the possibility of estimating LAI using 

the inverted radiative transfer model and RapidEye imagery extracted reflectance in an 

homogeneous forest canopies, it will be important to test the validity of this approach in 

heterogeneous forest canopies. As observed by Richter et al. (2011), heterogeneous forests may 

need higher complexity of models such as 3-dimensional radiative transfer modeling. Regarding 

future use of PROSAIL H for estimating LAI of insect defoliated levels using new generational 

multispectral data, we recommend that prior knowledge of the biophysical variable in the 

specific forest should be known. This will help to reduce the loads of parameterization in RTM 

models., addressing the relationship between change in LAI at each defoliation levels will no 

doubt increase the potential for early and effective operational monitoring of insect defoliation 

patterns.  
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8.1 Introduction 

What benefit is remote sensing for insect defoliation in mopane woodland? Defoliation in 

mopane woodland is currently viewed as one of the serious impacts in the depletion of the 

vitality and quality of the resources emanating from the woodland (Adelabu et al., 2012; 

Ditlhogo et al., 1996). However, while the depletion of worms derived from mopane woodland 

have been reported in different areas, none of these depletions have been attributed to the 

impacts of the worms on the vitality and productivity of their host. Defoliation process as a result 

of the worms if not well managed can in the long run lead to the extinction of the tree and hence 

the worms within the region. In an effort to minimize the potential loss of mopane worms in 

mopane woodland of Southern Africa therefore, an integrated management strategy is needed 

combining detection, mapping and monitoring methods. 

However, detecting and monitoring defoliation levels in mopane woodland is challenging using 

conventional methods as it is very expensive and labour intensive because of time required for 

sampling, and most importantly the need to collect data immediately before, during and after an 

extreme event (de Beurs and Townsend, 2008). Hence, the need for methods that will bring into 

consideration the financial implications, real time detection and advanced techniques for 

monitoring insect defoliation. Remote sensing however brings an advantage of being able to 

meet data requirements, and has proven to be  a cost-effective alternative to ground data 

acquisition. 

Nevertheless, three challenges may make it difficult to monitor mopane defoliation with remote 

sensing. First, mopane worm-mopane tree interactions are dynamic and periods where 

defoliation can be detected are often short (Hrabar et al., 2009b). Secondly, most mopane 

woodland contain other tree species that are always present during the mopane worm defoliation 

making it very difficult to distinguish defoliation of mopane from reflectance of other end 

members (Vogelmann et al., 1993). Finally, a challenge may occur when an image at the peak of 

an outbreak is being analyzed; it is unclear if an effect (changes in chlorosis, nutrient content or 

tree vitality) or a determining factor of the insect population drives the satellite image 

classification (Somers et al., 2010). The solution to these challenges will therefore be to develop 

cutting edge techniques that can focus on detecting and discriminating levels of insect defoliation 

in mopane woodland. 

Hence, the objectives of this study were:  
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1. Review the different approaches including the remote sensing platforms and techniques 

that have been used for assessing insect defoliation and its implications for detecting and 

monitoring mopane worm defoliation of mopane woodland highlighting their strengths 

and weakness. 

2. Discriminate Colophospermum mopane and its co-existing species in a semi-arid forest 

using spectral information provided by the RapidEye sensor applying advanced 

classification algorithms. 

3. Discriminate the levels of change in forest canopy cover detectable after insect 

defoliation based on ground based hyperspectral measurements in mopane woodland. 

4. Explore and evaluate the benefit of the RapidEye red edge channel for discriminating 

different levels of insect defoliation in mopane woodland. 

5. Test the reliability and robustness of the internal accuracy estimate in random forest (RF) 

ensemble classifier in discriminating different levels of insect defoliation in mopane 

woodland. 

6. Quantify the impact of insect defoliation on the leaf area index of mopane canopies by 

estimating leaf area index at different defoliation levels using radiative transfer model. 

8.2 Spectral discrimination of Mopane from its Co-existing Species 

In order to detect levels of defoliation in mopane woodland, it was necessary to discriminate 

mopane tree species from other co-existing tree species. The study evaluated the ability of 

relatively cheap and readily available new multispectral RapidEye imagery for discriminating 

mopane tree species and its co-existing species using machine leaning algorithms with limited 

training samples (Chapter 3).  Four dominant tree species that co-exist with mopane species 

namely: Grewia bicolar GB; Dichrostachys cinerea DC; Acacia erubiscens AE; Acacia tortilis 

AT were discriminated from each other using support vector machine (SVM) and random forest 

(RF). Specifically, the following questions were addressed  

 Can Colophospermum mopane (CM) and its co-existing species be separated using the 

RapidEye image with strategically positioned spectral bands?  

 Does the additional red-edge band of RapidEye improve the classification accuracy 

significantly compared to the 4 standard bands?  

 Which of the classification algorithms (RF and SVM) is better for detailed tree species 

classification in areas with limited training samples based on classification accuracies?   
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The vegetation map of RF and SVM classifications are presented in Fig 8.1. From the maps, it is 

very clear that using both methods of classification (RF and SVM), CM species could be 

discriminated from its co-existing species using RapidEye images with overall accuracies of 

88.75% and 85% for SVM and RF classifications respectively. With regards to class pairs, the 

study observed that it is easier to discriminate Colophospermum mopane from Acacia erubiscens 

and Grewia bicolar GB compared with Dichrostachys cinerea DC and Acacia tortilis AT (Table 

8.1).  

  

Figure 8. 1: Maps showing the classification of the 5 tree species using RF and SVM machine 

learning algorithm. 

Table 8. 1: Comparison of confusion matrix obtained after the classification of Colophospermum 

mopane and its co-existing species from both the SVM and RF. The confusion matrix includes 

overall accuracy (OA) and class accuracy. 

SVM RF 

                 AE AT CM DC GB AE AT CM DC GB 

AE 15 1 0 0 0 15 0 1 0 0 

AT 0 11 1 3 1 0 10 3 3 0 

CM 0 0 16 0 0 0 0 16 0 0 

DC 1 0 1 14 0 1 0 2 13 0 

GB 0 0 1 0 15 0 0 1 1 14 

CA (%) 93.75 91.67 84.21 82.35 93.75 93.75 90.91 72.73 76.47 100 

OA= 88.75% OA= 85% 
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The study also demonstrated that the new red-edge band in the RapidEye sensor has potential for 

classifying tree species in semi-arid environment when integrated with other standard bands with 

results showing in both methods, when the red-edge band is excluded, the accuracies decreased 

by ± 8%. Similarly, we observed that where there are limited training samples, SVM performs 

better than RF. The results from this study provide the basis for future powerful algorithms that 

can be used to discriminate among tree species especially in semi-arid environment.  

8.3 Hyperspectral Discrimination of Defoliation Levels in Mopane Woodland 

Having been able to discriminate mopane species from its co-existing species, the capability of 

ground based hyperspectral dataset to discriminate levels of insect defoliation in mopane trees 

was evaluated in this study. Hyperspectral dataset brings an advantage of spectral details at 

different levels of defoliation. Moreover, hyperspectral dataset facilitates detailed spectral 

measurement of reflectance related to biochemical and biophysical attributes of plants, which are 

associated with its structure, physiology and phenology, and therefore with its health status, a 

mammoth task that could not be done accurately with multi-spectral sensors (Cho and Skidmore, 

2006; Mutanga et al., 2004; Schlerf and Atzberger, 2012). Furthermore, there is mounting 

evidence that hyperspectral data has the capability, not only to assess defoliation, but to detect 

early signs of defoliation even before visual symptoms are apparent due to its high spectral bands 

(Ismail et al., 2008). To date and to the best of our knowledge, no study has been carried out 

using ground based hyperspectral dataset to discriminate different levels of insect induced 

defoliation. To this end, canopy spectral measurements were taken from three levels of 

defoliation identified in the field: Undefoliated (UD), Partly defoliated (PD) and Refoliating 

plants (R) using ASD FieldSpec Handheld 2
TM

 (Chapter 4).  

A pre-filtering approach (ANOVA) was compared with random forest independent variable 

selector in selecting the significant wavelengths for classification. Furthermore, a backward 

feature elimination method was used to select optimal wavelengths for discriminating the 

different levels of defoliation in mopane woodland. Results show that optimal wavelengths 

located at 707nm, 710nm, 711nm, 712nm, 713nm, 714nm, 727nm and 1066nm were able to 

discriminate between the three levels of defoliation. The results further show that there was no 

significant difference in the overall accuracy of classification when random forest variable 

selector was used 82.42% (Kappa = 0.64) and the pre-filtering approach (ANOVA) 81.21% 

(Kappa = 0.68) used before building the classification (Table 8.2). However, the use of 
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hyperspectral data comes with its own difficulties in terms of cost, availability, processing, high 

dimensionality and limited availability especially in sub-Sahara Africa (Mansour, 2013). Since, 

the results of the study indicates the usefulness of the red-edge region of electromagnetic 

spectrum in discriminating the defoliation levels, the potential use of advanced multispectral 

remote sensing sensor with the red-edge band was therefore sought for discriminating the 

defoliation levels.  

Table 8. 2: Comparison of confusion matrix obtained after the classification of the three levels 

of defoliation (PD, UD, R) using the optimal wavelengths for discriminating. The confusion 

matrix includes overall accuracy (OA), Kappa, class error (CE), producer’s accuracy (PA) and 

user’s accuracy (UA) 

ANOVA RF 

 PD UD R Total UA (%) PA (%) CE (%)  PD UD R Total UA (%) PA (%) CE (%) 

PD 34 21 0 55 77.27 61.82 38.18 PD 36 19 0 55 78.26 65.45 34.55 

UD 10 45 0 55 68.18 81.82 18.18 UD 10 45 0 55 70.31 81.82 18.18 

R 0 0 55 55 100 100 0 R 0 0 55 55 100 100 0 

Total 44 66 55 165    Total 46 64 55 165    

CE 

(%)  

22.73 32 0     CE 

(%) 

21.7 29.7 0     

Kappa = 0.64, OA = 81.21% Kappa = 0.68, , OA = 82.42% 

8.4 Evaluating the Capability Of RapidEye High Resolution Imagery in Classifying 

the Insect Defoliation Levels 

 The use of multispectral dataset for classifying insect defoliation levels has faced great 

challenges especially in their ability to visualize and spectrally characterize changes in the 

canopy of leaves before, during and after an attack. While hyperspectral dataset could be able to 

address these challenges (Adelabu et al., 2014; Coops et al., 2003; Lawrence et al., 2006), the 

cost and availability of hyperspectral data in sub-Saharan Africa is still a challenge. The solution 

therefore lies in identifying cheap and readily available sensors with strategic bands that can 

identify the defoliation even when symptoms are not visible to the human eye (Adelabu et al., 
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2012; Zarco-Tejada et al., 2000). In this thesis, valuable evidence of application and potential of 

the red edge channel of RapidEye multispectral image information to accurately classify insect 

defoliation levels (Partly defoliated, undefoliated and refoliating) are presented (Chapter 5). The 

subtle visual difference in the canopy colour levels of UD and PD challenged us to consider 

more detailed and specific spectral-bands for classifying the three levels of mopane worm 

defoliation. Two machine learning algorithm namely: Random Forest and Support vector were 

applied using different sets of spectral feature input, including and excluding the red edge band. 

Result showed that the incorporation of red edge increases classification accuracy of insect 

defoliation levels in all analysis performed in the study. For instance, when all the 5 bands of 

RapidEye imagery were used for classification, the overall accuracies increases about 19% and 

21% for SVM and RF respectively as opposed to when the red edge channel was excluded 

(Table 8.3). The study also found out that the Normalized Difference Red-Edge index (NDVI-

RE) yielded a better accuracy (84% and 83% for RF and SVM respectively) than Normalized 

Difference Vegetation Index (NDVI) (61% and 51% for RF and SVM respectively). The results 

of sensitivity analysis (all RapidEye bands, NDVI and NDVI-RE) further confirmed that NDVI-

RE and red-edge band of RapidEye image outperformed the other input variable (NDVI, Blue, 

Green Red and Near Infrared bands of RapidEye image) in classifying the defoliation levels (Fig 

8.2). Although the result seems plausible, the study further tested the reliability of one of the 

classifiers used (RF) to ascertain the level of validity of its accuracies in classifying the insect 

defoliated levels in mopane woodland. 

Table 8. 3: Class accuracies and percentage deviations for all RapidEye bands and all RapidEye 

bands excluding red-edge based on SVM, RF classification algorithm.  

  RF SVM 

  AB AB-RE Dev. (%) AB  AB-RE Dev. (%) 

PD 56 52 4 68 60 8 

R 96 40 56 88 44 44 

UD 84 80 4 84 80 4 

Overall Accuracy (%) 79 58 21 80 61 19 

     * AB = All bands, AB-RE= All bands excluding red-edge 
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Figure 8. 2: Ranking of 5 bands of RapidEye image, NDVI and NDVI-RE using mean decrease 

accuracy for classifying levels of defoliation. 

8.5 Evaluating the Reliability and Stability of Internal Accuracy Assessment of 

Random Forest when Compared with Independent Dataset 

Classification accuracies are of utmost important for any classification in remote sensing (Foody, 

2004; Manandhar et al., 2009; Pontius and Millones, 2011). The accuracy of any classification 

depends on the available training samples used as well as the independent samples set aside for 

testing the performance of the classification (Congalton and Green, 1999). However, currently 

there are no agreements in the remote sensing world on the number of samples necessary for 

training and testing data and hence validating classification because sample size relates directly 

to the power of analysis which is a function of sample site variability (Foody et al., 2006). 

Practically, in most of remote sensing applications for insect defoliation monitoring, the number 

of training samples is limited for comprehensive monitoring because of difficulty in collecting 

data before and after defoliation (Hall et al., 2007). This is particularly true for defoliation in 

semi-arid environment such as mopane woodland, where collecting such sufficient training and 

test samples is difficult due to poor accessibility. Given these problems, the challenge was to test 

the reliability and stability of existing classifier for effective processing and classification of 

insect defoliation levels in mopane woodland using new multispectral RapidEye imagery. 

In this thesis (Chapter 6), we tested the reliability and stability of the internal validation 

technique of RF algorithm. There have been debates on using RF internal validation technique 

for validation because it is assumed to be reliable and stable. While previous studies such as 
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Lawrence et al. (2006), Adam et al. (2011), Breiman and Cutler (2012) and Waske et al. (2007) 

have supported this claim, others such as Bylander (2002), Ruiz-Gazen and Villa (2007), 

Statnikov et al. (2008), Strobl and Zeileis (2008) and Menze et al. (2009) have contested the 

validity of this claim. Firstly, those who oppose its reliability have only done so using dataset 

other than remote sensing. Secondly, those who support the claim that internal validation of RF 

is reliably have randomly used various splitting options for training and testing (independent 

dataset), however, the rationale behind this has not been statistically justified. Therefore, the 

study evaluated the reliability and stability of the RF internal validation process with 

independent dataset when splited over different options for insect defoliation mapping using 

multispectral RapidEye Image. Furthermore, the study statistically validates the best split option 

for defoliation classification using RF and multispectral imagery (RapidEye).  

Results showed that 40% -60%, 50% -50%, 60% -40% and 70% -30% split options were 

statistically not different (95% significance level) from each as compared with the other split 

options (Table 8.4). However, 70% -30% split option outperforms other split options because it 

had the lowest mean standard errors (0.2351) and that a much narrower distribution (CL = 

0.0094) was observed from the standard errors produced. Similarly, the study also discovered 

that the internal estimate of accuracy of RF was able to provide relatively lower error rates 

(0.2319) for what is small datasets for classification as compared to other validation techniques 

used in this study (Fig 8.3). Moreover, it was observed that the errors produced by the internal 

validation methods of RF was relatively stable as can be seen from the result of confidence 

interval (0.0006) obtained in this study. It was therefore concluded that for using RF in insect 

defoliation classification, 70-30% split option is preferable for validating classification 

independently although the robustness of the defoliation classification may be better achieved 

using internal bootstrapping accuracy estimate in RF. 
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Table 8. 4: P values of the Turkey post Hoc test performed to compare the errors produced from 

different splitting options 

 

20-80 30-70 40-60 50-50 60-40 70-30 80-20 

RF 

Validating 

20-80 1 < 0.0001 0.002 0.005 < 0.0001 < 0.0001 0.034 < 0.0001 

30-70 < 0.0001 1 0.000 < 0.0001 0.011 0.034 < 0.0001 < 0.0001 

40-60 0.002 0.000 1 1.000 0.975 0.877 0.010 0.806 

50-50 0.005 < 0.0001 1.000 1 0.902 0.722 0.010 0.877 

60-40 < 0.0001 0.011 0.975 0.902 1 1.000 0.006 0.902 

70-30 < 0.0001 0.034 0.877 0.722 1.000 1 0.036 0.975 

80-20 0.034 < 0.0001 0.010 0.010 0.006 0.036 1 0.002 

RF Validating < 0.0001 < 0.0001 0.806 0.877 0.902 0.975 0.002 1 

* Highlighted values are significantly different. 
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Figure 8. 3: Histogram showing the frequency of standard error produced after classification for different holdout options 
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8.6 Quantifying Leaf Area Index (LAI) for Different Defoliation Levels using 

Radiative Transfer Model 

Relationship between biophysical characteristics such as leaf area index (LAI) of canopies and 

reflectance has previously been studied with great success (Asner, 1998; Atzberger, 2004; 

Richter et al., 2012; Ustin et al., 2009). The estimation of LAI from remote sensing are usually 

based on empirical method, spectral vegetation indices or radiative transfer (RT) inversion model 

(Rullan-Silva et al., 2013). The empirical methods have been observed to be sensor specific and 

dependent on site and sampling condition, hence they are expected to change in space and time 

(Colombo et al., 2003; Meroni et al., 2004). Moreover, LAI estimation using the empirical 

methods still face a lot of challenges with regards to the need for collecting in situ calibration 

datasets leading to high cost and labour intensive measurements (Richter et al., 2011). To this 

end, RT models provide an alternative approach as it assumes that the spectral variation of 

canopy reflectance as a function of canopy’s leaf and soil background could be accurately 

described using physical laws through the interaction and transfer of radiation inside the canopy 

(Meroni et al., 2004).  

Although, advances have been made in the use of hyperspectral (Adelabu et al., 2014) and 

multispectral (Adelabu et al., 2013) dataset for discriminating insect defoliation levels, the 

knowledge of biophysical variables such as LAI may help to understand the influence of the 

insects on the canopy at each of the defoliation levels.  In this thesis (Chapter 7), LAI was 

estimated for different defoliation levels based on simulated data from RapidEye image by 

inverting the canopy radiative transfer model PROSAIL H (Jacquemoud et al., 2009). We 

compared the estimated LAI with other results in the literature.  

The estimated mean LAI are within the LAI values obtained by other simulation studies 

(Colombo et al., 2003; Weiss et al., 2000) (Table 8.5). Furthermore, the estimated LAI were also  

in the range of LAI estimated by previous studies that have attempted to classify defoliation 

levels using remote sensing data (Hall et al., 2003b). The study further observed that the NDVI-

RE has the strongest relationship with the estimated LAI while the red band (band 2) has a weak 

relationship (Fig 8.4). The result is in line with other studies that have conducted relationship 

analysis between LAI values and reflectance from different regions of electromagnetic spectrum  

(Vina et al., 2011). 
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Table 8. 5: Descriptive statistics of the estimated LAI from the Inverted PROSAIL H RT model 

Defoliation Levels Mean Maximum Minimum Std. Dev. 

PD 4.622328 5.020619 4.233532 0.140263 

UD 5.123606 5.969437 4.494172 0.164477 

R 4.147604 4.647977 3.433718 0.170675 

 

The study confirmed that it is possible to estimate LAI through the inversion of a radiative 

transfer model using relatively cheap and available new generational multispectral imagery such 

as RapidEye with comparable values to those of empirical approaches (from literature).
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Figure 8. 4: Pearson correlation coefficient of LAI and different bands of RapidEye and selected vegetation indices, A=Band 1, 

B=Band 2, C=Band 3, D=Band 4, E=Band 5, F=NDVI, G=NDVI-RE. 
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8.7 Conclusion 

The main aim of this study was to investigate the capabilities of remote sensing techniques in 

classifying different levels of insect defoliation in mopane woodland using different remote 

sensing sensors. The findings reported in this thesis are that the information contained in 

some remote sensing sensors and the use of advance classification algorithm can accomplish 

these tasks. The main conclusions are based on the following findings from the different 

objectives addressed in this study: 

1. Canopy reflectance from relatively cheap and readily available high resolution 

multispectral data with strategic bands such as RapidEye has a strong potential to be 

used for discriminating Colophospermum mopane and its co-existing species using 

machine learning algorithm such as SVM and RF. The result implies that the 

challenges facing researchers in classifying tree species in semi-arid environment 

could be minimized through the use of remote sensing data with strategic bands. 

Furthermore, the results permitted us to use ground based hyperspectral data to 

identify defoliation levels in mopane trees.  

2. Using the ground based hyperspectral data, the RF algorithm could be used for 

discriminating the spectral differences among the different levels of change in canopy 

after insect defoliation with relatively high accuracy. The analysis of the ground based 

hyperspectral data also showed the importance of the red-edge and near-infrared 

regions in discriminating the insect defoliation levels. This result prompts us to 

downscale to readily available and cheap multispectral imagery with strategic bands.    

3. The inclusion of the red-edge channel in the RapidEye generally benefits the image 

classification of insect defoliated levels in mopane woodland.  

4. Similarly, the study concludes that vegetation indices derived from red-edge band 

such has NDVI-RE have stronger capability to discriminate insect defoliation levels 

as compared with indices derived from traditional remote sensing bands.  

5. The internal accuracy assessment of machine learning RF algorithm is relatively 

reliable and stable for insect defoliation classification and it is worth considering as a 

desirable technique for future insect defoliation applications especially in complex 

environments such as semi-arid environment where usually no convenient or 

sufficient field data are available. 

6. Biophysical variables such as LAI of insect defoliated levels could be estimated 

through the inversion of radiative transfer model such as PROSAILH using relatively 
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cheap and available new generational multispectral imagery such as RapidEye with 

comparable values to those of conventional or empirical approaches. 

8.8 The Future 

Remote sensing is an integral and essential tool for the collection of data needed to support 

decisions and action programs to improve forest health (Zhou et al., 2010). While not all 

attempts to use remote sensing in forest health protection have proven successful, many have 

shown to meet data requirements, and have proven to be cost-effective alternatives to ground 

data acquisition. The findings from this thesis contribute to existing research in general and 

further support scientific knowledge of environmental management practices and food 

security in Africa and other sites around the world more sensitive to global changes. 

Moreover, the findings of this thesis could lay the foundation for possible management 

practices that will enable efficient and sustainable use of the resources emanating from 

mopane woodland. Therefore, the following recommendations are suggested for future 

research: 

1. The present study used ground based hyperspectral data to discriminate the levels of 

defoliation in mopane woodland; it will however be good for future research to test 

the ability of airborne or spaceborne hyperspectral imagery in detecting and 

classifying the defoliation levels. 

    

2. New generation multispectral data contains strategic bands and do not require 

complex processing techniques and are available and relatively inexpensive. In this 

regard, the capability of multispectral sensors other than RapidEye (e.g. 

Sumbandilasat, Sentinel -2, and Worldview-2) in classifying the different defoliated 

levels should be tested. 

 

3. In order for remote sensing methods to become operational for classifying these 

different defoliation levels, future research is needed to investigate the optimal spatial 

resolution and pixel size that could better classify the different levels of insect 

defoliation. 

 

4. Further research should investigate and measure the biophysical and biochemical 

variables (including LAI, Nitrogen, and Tannin etc.) of mopane canopies at different 

defoliation levels with the aim of relating it canopy reflectance.  
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5. Although the reliability of the internal accuracy assessments of RF in classifying 

different defoliation levels was tested in this study, more research is still needed on 

the strength of RF and SVM used in this study as compared to other classifiers such as 

artificial neural network which has been proved to be successful in remote sensing. 

This is particularly essential for insect defoliation classification in areas such as semi-

arid environments where it may be difficult to collect samples because of 

accessibility. 
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Appendix 1 

Classification image of the best indices (NDVI-RE) for Chapter 5 

 


