• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solutions of the Volterra integro-differential equation.

    Thumbnail
    View/Open
    Ali_Yusuf_2018.pdf (2.321Mb)
    Date
    2018
    Author
    Ali, Yusuf.
    Metadata
    Show full item record
    Abstract
    Integro-di erential equations has found extensive applications in the eld of engineering, sciences and mathematical modelling of various physical and biological phenomena. In this thesis we focus on the Volterra type integro-di erential equation which has been used to model biological species co-existing, heat di usion, electromagnetic theory etc. In recent years much research has focused on nding approximate solutions of the integro-di erential equation by polynomial methods, speci cally focusing on the Lagrange collocation and piecewise cubic Hermite collocation methods. A further aspect to the thesis will be on analytical methods, mainly the applications of Lie group theory to the Volterra type equation. Lie group theory is one of the most powerful methods applied to obtain solutions of di erential equations. We will present the linear independent symmetries of the Volterra type equation of the rst and second kind. In addition, we shall apply the Laplace transform and it's inverse to determine general solutions for selected forms of kernel, speci cally those with convolution integrands.
    URI
    https://researchspace.ukzn.ac.za/handle/10413/22209
    Collections
    • Masters Degrees (Applied Mathematics) [74]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV