Repository logo
 

Mapping the remnant KwaZulu-Natal sandstone sourveld grass patches in the Ethekwini Municipality using a high resolution multispectral sensor.

dc.contributor.advisorMutanga, Onisimo.
dc.contributor.authorHlanguza, Nomcebo.
dc.date.accessioned2016-11-09T13:58:49Z
dc.date.available2016-11-09T13:58:49Z
dc.date.created2015
dc.date.issued2015
dc.descriptionMaster of Science in the School of Agriculture, Earth and Environmental Sciences University of KwaZulu-Natal, Pietermaritzburg 2015.en_US
dc.description.abstractThe indigenous KwaZulu-Natal sandstone sourveld (KZN SS) grassland is highly endemic and species-rich, yet critically endangered and poorly conserved. Ecological threats to this grassland are further exacerbated by the occurrence of woody plant encroachment, a form of degradation that has severe negative environmental and economic consequences. In this regard, understanding the distribution of the KZN SS fragments is critical for implementing conservation and management strategies. Advances in remote sensing technologies allow for accurate and precise mapping, hence the aim of this study is to identify the remnants of the KZN SS within the eThekwini Municipality using high resolution multispectral RapidEye data. The first part of this research seeks to assess the capability of RapidEye satellite imagery in mapping the indigenous KZN SS using support vector machines (SVM) and maximum likelihood (ML) classifiers. Although both techniques were successful in mapping the KZN SS, results show that ML was slightly outperformed by SVM, which yielded an overall accuracy of 74.4%. In addition, SVM were more accurate in distinguishing the KZN SS class with a score of 74.4%, compared to that of ML, namely 72.1%. The study underscores the importance of high resolution RapidEye data in detecting and mapping the remaining fragments of the KZN SS within the eThekwini Municipality. The second part of this research zoomed into discriminating between indigenous and alien woody plant encroachment within the KZN SS. The random forest (RF) algorithm was applied to the image and successfully mapped the two types of vegetation with an overall accuracy of 86%. In addition, an overall accuracy of 74% was obtained in estimating the five dominant tree species within the two classes. The results obtained highlight the potential of new generation RapidEye satellite data in combination with new advanced machine learning techniques in predicting the distribution of woody cover in a grassland ecosystem. Overall, this study successfully mapped the KZN SS patches, as well as bush encroachment patches. The strategic bands in the new generation RapidEye image were critical in species mapping.en_US
dc.identifier.urihttp://hdl.handle.net/10413/13665
dc.language.isoen_ZAen_US
dc.subjectGrassland conservation -- South Africa -- eThekwini Municipality Metropolitan.en_US
dc.subjectGeographic information systems.en_US
dc.subjectTheses -- Geography.en_US
dc.titleMapping the remnant KwaZulu-Natal sandstone sourveld grass patches in the Ethekwini Municipality using a high resolution multispectral sensor.en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hlanguza_Nomcebo_2015.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: