Repository logo

Fumonisin B2 induces mitochondrial stress and mitophagy in Hek293 cells.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



Food insecurity poses a significant socio-economic problem in third world economies, particularly in countries that rely heavily on maize and maize products. Ubiquitous soil fungi parasitize agricultural commodities and produce mycotoxins. Fumonisin B2 (FB2), a neglected mycotoxin, is produced by several Fusarium species. The aim of this study was to investigate mitochondrial stress responses in human embryonic kidney (Hek293) cells exposed to FB2 for 24 hours (hr). Cell viability was assessed via the methylthiazol tetrazolium (MTT) assay and the half maximal inhibitory concentration (IC50) value (317.4 μM) was generated. Additional concentrations of 100 μM and 500 μM were selected to achieve a broader toxic profile of FB2. Reactive oxygen species (ROS) was quantified (fluorescence), mitochondrial membrane depolarisation (fluorescence) was assessed and adenosine triphosphate (ATP) concentration was evaluated (luminometry) to assess mitochondrial integrity. The relative expression of mitochondrial stress response proteins, Sirtuin 3 (SIRT3), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), LON protease (LONP1), PTEN-induced putative kinase 1 (PINK1), ubiquitin-binding adaptor p62 (p62) and heat shock protein 60 (HSP60) was determined by western blots. Transcript levels of SIRT3, PINK1 and microRNA-27b (miR-27b) was assessed using quantitative PCR (qPCR). Results indicated that both low and high concentrations of FB2 that were within the naturally occurring concentration range of the compound were able to induce mitochondrial dysfunction. FB2 (IC50) downregulated mitochondrial stress proteins and upregulated mitophagy markers. Despite upregulation of mitochondrial stress maintenance proteins at the highest concentration (500 μM) of FB2, mitophagic markers increased with subsequent cell death; whilst at a lower concentration (100 μM) of FB2, mitochondrial stress protein expressions were upregulated resulting in decreased expression of mitophagic markers and cell proliferation. In conclusion, FB2 was cytotoxic to the kidney derived Hek293 cells via induction of mitochondrial stress and mitophagy. Keywords: Fumonisin B2, mitophagy, mitochondrial stress, PINK1, Nrf2, SIRT3, human kidney cells, microRNA


Masters Degree. University of KwaZulu-Natal, Durban.