• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bounds on the extremal eigenvalues of positive definite matrices.

    Thumbnail
    View/Open
    Jele_Thokozani_Cyprian_Martin_2018.pdf (358.4Kb)
    Date
    2018
    Author
    Jele, Thokozani Cyprian Martin.
    Metadata
    Show full item record
    Abstract
    The minimum and maximum eigenvalues of a positive de nite matrix are crucial to determining the condition number of linear systems. These can be bounded below and above respectively using the Gershgorin circle theorem. Here we seek upper bounds for the minimum eigenvalue and lower bounds for the maximum eigenvalue. Intervals containing the extremal eigenvalues are obtained for the special case of Toeplitz matrices. The theory of quadratic forms is discussed in detail as it is fundamental in obtaining these bounds.
    URI
    https://researchspace.ukzn.ac.za/handle/10413/22261
    Collections
    • Masters Degrees (Applied Mathematics) [74]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV