• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electrical Engineering
    • Masters Degrees (Electrical Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electrical Engineering
    • Masters Degrees (Electrical Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Damping subsynchronous resonance using supplementary controls around the static synchronous series compensator.

    Thumbnail
    View/Open
    Masenkane_Mahlomola_Joseph_2018.pdf (17.93Mb)
    Date
    2018
    Author
    Masenkane, Mahlomola Joseph.
    Metadata
    Show full item record
    Abstract
    The demand for electric power increases rapidly with the growth in human population whereas expansion of existing power transmission infrastructure is restrained by difficulties in obtaining rights of way, resource scarcity and environmental policies inter alia. This has called for better utilization of existing transmission facilities which, for many years has been achieved through series compensation of transmission lines using conventional series capacitor banks. However, during major system disturbances, these conventional series capacitors weaken the damping of torsional oscillations in the neighboring turbine-generator shafts, which may lead to the failure and damage of the shafts concerned; a phenomenon known as subsynchronous resonance (SSR). Alternative means of series compensation using high-speed semiconductor switches has been realized following introduction of Flexible AC Transmission Systems (FACTS) in power systems. This research work focuses on damping of SSR using damping controls around the second-generation series device of the FACTS family namely the static synchronous series compensator (SSSC). The SSSC is designed to inject voltage in series with the transmission line and in quadrature with line current to emulate capacitive reactance in series with the transmission line. In this research work, a model of the SSSC is developed in Power System Computer Aided Design (PSCAD) and the IEEE First Benchmark Model (FBM) is used for SSR analysis. Initially, the resonant characteristics of the SSSC compensated transmission line is studied to determine whether this device has a potential to excite SSR on its own. The results confirm earlier work by other researchers using a detailed model of the SSSC, showing that introduction of a SSSC can indeed excite SSR, although not to the same extent as conventional series capacitors. The research work then considers the addition of supplementary damping controllers to the SSSC to add positive damping to subsynchronous oscillations caused by the SSSC itself as well as by a combination of conventional series capacitors and a SSSC in the IEEE FBM. Finally, the research work considers a more complex transmission system with an additional transmission line that incorporates conventional series capacitors. Time-domain simulation results and Fast Fourier Transform analyses show that a damping controller around the SSSC can be used to mitigate SSR either due to the SSSC itself, or due to conventional series capacitors in the same line as the SSSC or due to conventional series capacitors in an adjacent line of an interconnected transmission network.
    URI
    https://researchspace.ukzn.ac.za/handle/10413/18007
    Collections
    • Masters Degrees (Electrical Engineering) [173]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV