Repository logo
 

The study of the self-damping properties of overhead transmission line conductors subjected to wind-induced oscillations.

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Conductors are flexible, elastic structural components of power lines. The relatively high flexibility of the conductors, coupled with the long spans and the axial tension, makes conductors to be highly prone to dynamic excitation such as wind loading. The problem of the dynamic behavior of overhead power transmission line conductors under the action of wind and other forms of excitations is very important, since it proffers the optimal design of the line in terms of its dynamic characteristics. Thus, mechanical vibration of power lines needs to be mitigated, especially from aeolian vibration as they can lead to damage of the lines causing power interruptions. The dynamic behaviour of conductors can be influenced by its damping. However, available tools for the analysis of this phenomenon is scarce. The objective of this study is to evaluate the conductor self-damping. The goal is to characterize and ascertain the influence of various conductors’ parameters on the amount of energy dissipation. In this study, a numerically based investigation of the response of conductors was carried out i.e. finite element analysis (FEA or FEM). This was used to model the conductor using a new modeling approach, in which the layers of its discrete structure of helical strands were modelled as a composite structure. Due to the helical structure of the conductor strands, this give rise to inter-strands contacts. During bending caused by external loading, the stick-slip phenomenon does occur around the contact region resulting in damping of energy out of the system. Characterizing the damping mechanism as hysteresis phenomenon, this resulted from coulomb’s dry-friction with the stick-slip regime at contacts points between the conductor strands. Employing contact mechanics to characterize and the use of FEM to discretize these contact regions, parameters such as the contact forces, strain and stress were established. When the conductor experiences a dynamic excitation in a sinusoidal form, a hysteresis loop is formed. The use of contact region parameters, to evaluate the area of the hysteresis loop and the area of the loop determines the amount of self-damping. Experimental studies were conducted to validate the FEM model. Two forms of experiment were done. The first was the sweep test, done at a specified axial tension i.e. as a function of its ultimate tensile strength. This was used to determine the resonance frequencies for the conductors. In the second test, using the determined resonance frequencies from the first test were used to vibrate the conductors at these frequencies to establish the hysteresis loop at the same specified axial tension. The experiment was conducted with four different conductors with different number of layers. This was used to establish the relation between the numbers of layer and the amount of damping from the conductor. The conductors’ vibration experimental results obtained at a defined axial tension (as percentage of its UTS) correlate with that of FEM model. The results obtained showed a general increase in the resonance frequencies of vibration and a decrease in damping as the axial tension of the conductor is increased. The establishment of the hysteretic constitutive behaviour of strands under specific loading conditions as described in the thesis, using this FEM model, an algorithm was developed to evaluate the conductor self-damping. Based on this algorithm, computer programs have been developed to evaluate the conductor’s dynamic behaviour and implemented in MATLAB environment. Due to the very close relation between damping and conductor fatigue, this model can also be extended to investigate fatigue failure of conductors.

Description

Doctoral Degree. University of KwaZulu-Natal, Durban.

Keywords

Citation

DOI