Hybrid generalized non-orthogonal multiple access for the 5G wireless networks.
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The deployment of 5G networks will lead to an increase in capacity, spectral efficiency, low latency
and massive connectivity for wireless networks. They will still face the challenges of resource and
power optimization, increasing spectrum efficiency and energy optimization, among others.
Furthermore, the standardized technologies to mitigate against the challenges need to be developed
and are a challenge themselves. In the current predecessor LTE-A networks, orthogonal frequency
multiple access (OFDMA) scheme is used as the baseline multiple access scheme. It allows users to
be served orthogonally in either time or frequency to alleviate narrowband interference and impulse
noise. Further spectrum limitations of orthogonal multiple access (OMA) schemes have resulted in
the development of non-orthogonal multiple access (NOMA) schemes to enable 5G networks to
achieve high spectral efficiency and high data rates. NOMA schemes unorthogonally co-multiplex
different users on the same resource elements (RE) (i.e. time-frequency domain, OFDMA subcarrier,
or spreading code) via power domain (PD) or code domain (CD) at the transmitter and successfully
separating them at the receiver by applying multi-user detection (MUD) algorithms. The current
developed NOMA schemes, refered to as generalized-NOMA (G-NOMA) technologies includes;
Interleaver Division Multiple Access (IDMA, Sparse code multiple access (SCMA), Low-density
spreading multiple access (LDSMA), Multi-user shared access (MUSA) scheme and the Pattern
Division Multiple Access (PDMA). These protocols are currently still under refinement, their
performance and applicability has not been thoroughly investigated. The first part of this work
undertakes a thorough investigation and analysis of the performance of the existing G-NOMA
schemes and their applicability. Generally, G-NOMA schemes perceives overloading by non-orthogonal spectrum resource
allocation, which enables massive connectivity of users and devices, and offers improved system
spectral efficiency. Like any other technologies, the G-NOMA schemes need to be improved to
further harvest their benefits on 5G networks leading to the requirement of Hybrid G-NOMA
(G-NOMA) schemes. The second part of this work develops a HG-NOMA scheme to alleviate the
5G challenges of resource allocation, inter and cross-tier interference management and energy
efficiency. This work develops and investigates the performance of an Energy Efficient HG-NOMA
resource allocation scheme for a two-tier heterogeneous network that alleviates the cross-tier
interference and improves the system throughput via spectrum resource optimization. By considering
the combinatorial problem of resource pattern assignment and power allocation, the HG-NOMA
scheme will enable a new transmission policy that allows more than two macro-user equipment’s
(MUEs) and femto-user equipment’s (FUEs) to be co-multiplexed on the same time-frequency RE
increasing the spectral efficiency. The performance of the developed model is shown to be superior to
the PD-NOMA and OFDMA schemes.
Description
Master of Science in Engineering in Computer Engineering. University of KwaZulu-Natal, Durban, 2018.