## Age structured models of mathematical epidemiology.

dc.contributor.advisor | Banasiak, Jacek. | |

dc.creator | Massoukou, Rodrigue Yves M'pika. | |

dc.date.accessioned | 2014-11-21T07:43:28Z | |

dc.date.available | 2014-11-21T07:43:28Z | |

dc.date.created | 2013 | |

dc.date.issued | 2013 | |

dc.identifier.uri | http://hdl.handle.net/10413/11624 | |

dc.description | Ph. D. University of KwaZulu-Natal, Durban 2013. | en |

dc.description.abstract | We consider a mathematical model which describes the dynamics for the spread of a directly transmitted disease in an isolated population with age structure, in an invariant habitat, where all individuals have a finite life-span, that is, the maximum age is finite, hence the mortality is unbounded. We assume that infected individuals do not recover permanently, meaning that these diseases do not convey immunity (these could be: common cold, influenza, gonorrhoea) and the infection can be transmitted horizontally as well as vertically from adult individuals to their newborns. The model consists of a nonlinear and nonlocal system of equations of hyperbolic type. Note that the above-mentioned model has been already analysed by many authors who assumed a constant total population. With this assumption they considered the ratios of the density and the stable age profile of the population, see [16, 31]. In this way they were able to eliminate the unbounded death rate from the model, making it easier to analyse by means of the semigroup techniques. In this work we do not make such an assumption except for the error estimates in the asymptotic analysis of a singularly perturbed problem where we assume that the net reproduction rate R ≤ 1. For certain particular age-dependent constitutive forms of the force of infection term, solvability of the above-mentioned age-structured epidemic model is proven. In the intercohort case, we use the semigroup theory to prove that the problem is well-posed in a suitable population state space of Lebesgue integrable vector valued functions and has a unique classical solution which is positive, global in time and has the property of continuous dependence on the initial data. Further, we prove, under additional regularity conditions (composed of specific assumptions and compatibility conditions at the origin), that the solution is smooth. In the intracohort case, we have to consider a suitable population state space of bounded vector valued functions on which the (unbounded) population operator cannot generate a strongly continuous semigroup which, therefore, is not suitable for semigroup techniques–any strongly continuous semigroup on the space of bounded vector valued functions is uniformly continuous, see [6, Theorem 3.6]. Since, for a finite life-span of the population, the space of bounded vector valued functions is a subspace densely and continuously embedded in the state space of Lebesgue integrable vector valued functions, thus we can restrict the analysis of the intercohort case to the above-mentioned space of bounded vector valued functions. We prove that this state space is invariant under the action of the strongly continuous semigroup generated by the (unbounded) population operator on the state space of Lebesgue integrable vector valued functions. Further, we prove the existence and uniqueness of a mild solution to the problem. In general, different time scales can be identified in age-structured epidemiological models. In fact, if the disease is not terminal, the process of getting sick and recovering is much faster than a typical demographical process. In this work, we consider the case where recovering is much faster than getting sick, giving birth and death. We consider a convenient approach that carries out a preliminary theoretical analysis of the model and, in particular, identifies time scales of it. Typically this allows separation of scales and aggregation of variables through asymptotic analysis based on the Chapman-Enskog procedure, to arrive at reduced models which preserve essential features of the original dynamics being at the same time easier to analyse. | en |

dc.language.iso | en_ZA | en |

dc.subject | Epidemiology. | en |

dc.subject | Mathematical models. | en |

dc.subject | Group extensions (Mathematics) | en |

dc.subject | Hyperbolic groups. | en |

dc.subject | Theses--Applied mathematics. | en |

dc.subject.other | Chapman-Enskog | en |

dc.subject.other | Lebesgue | en |

dc.title | Age structured models of mathematical epidemiology. | en |

dc.type | Thesis | en |