• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Computer Science
    • Masters Degrees (Computer Science)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Handwritten signature verification using locally optimized distance-based classification.

    Thumbnail
    View/Open
    Thesis (2.385Mb)
    Date
    2012
    Author
    Moolla, Yaseen.
    Metadata
    Show full item record
    Abstract
    Although handwritten signature verification has been extensively researched, it has not achieved optimum accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still widely used as a means of personal verification. This research work presents efficient distance-based classification techniques as an alternative to supervised learning classification techniques (SLTs). Two different feature extraction techniques were used, namely the Enhanced Modified Direction Feature (EMDF) and the Local Directional Pattern feature (LDP). These were used to analyze the effect of using several different distance-based classification techniques. Among the classification techniques used, are the cosine similarity measure, Mahalanobis, Canberra, Manhattan, Euclidean, weighted Euclidean and fractional distances. Additionally, the novel weighted fractional distances, as well as locally optimized resampling of feature vector sizes were tested. The best accuracy was achieved through applying a combination of the weighted fractional distances and locally optimized resampling classification techniques to the Local Directional Pattern feature extraction. This combination of multiple distance-based classification techniques achieved accuracy rate of 89.2% when using the EMDF feature extraction technique, and 90.8% when using the LDP feature extraction technique. These results are comparable to those in literature, where the same feature extraction techniques were classified with SLTs. The best of the distance-based classification techniques were found to produce greater accuracy than the SLTs.
    URI
    http://hdl.handle.net/10413/10112
    Collections
    • Masters Degrees (Computer Science) [72]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV