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Abstract

Although handwritten signature verification has been extensively researched, it has
not achieved optimum accuracy rate. Therefore, efficient and accurate signature ver-
ification techniques are required since signatures are still widely used as a means of
personal verification. This research work presents efficient distance-based classification
techniques as an alternative to supervised learning classification techniques (SLTs). Two
different feature extraction techniques were used, namely the Enhanced Modified Di-
rection Feature (EMDF) and the Local Directional Pattern feature (LDP). These were
used to analyze the effect of using several different distance-based classification tech-
niques. Among the classification techniques used, are the cosine similarity measure,
Mahalanobis, Canberra, Manhattan, Euclidean, weighted Euclidean and fractional dis-
tances. Additionally, the novel weighted fractional distances, as well as locally optimized
resampling of feature vector sizes were tested. The best accuracy was achieved through
applying a combination of the weighted fractional distances and locally optimized resam-
pling classification techniques to the Local Directional Pattern feature extraction. This
combination of multiple distance-based classification techniques achieved accuracy rate
of 89.2% when using the EMDF feature extraction technique, and 90.8% when using the
LDP feature extraction technique. These results are comparable to those in literature,
where the same feature extraction techniques were classified with SLTs. The best of the
distance-based classification techniques were found to produce greater accuracy than the
SLTs.
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Chapter 1

General Introduction

1.1 Introduction

1.2 Motivation

Biometrics is the study of measuring and quantifying human characteristics for authen-
tication or identification of individuals. Biometric modalities are regularly becoming an
important aspect of automated electronic security systems. Successful biometric systems
require methods and techniques that can authenticate or identify individuals with a high
level of accuracy.

Biometric systems are used either for recognition or verification. Recognition entails
the identification of a biometric trait, or set of traits, as belonging to a specific individual
from a given set of individuals. Conversely, verification entails authenticating a claim
that a biometric trait, or set of traits, belongs to a specific individual.

One of the most common and widely accepted biometric modality is the handwritten
signature. It has been used for the manual verification of individuals for centuries. Due
to its wide-spread use and acceptance, handwritten signatures are an ideal candidate for
automated biometric verification systems. The two processes for capturing signatures
are categorized as offline and online. For offline capture, a static image of a completed
signature is recorded. For online capture, the creation of a signature is recorded as a
function of time.

There are several cases in which online signatures can not be used. This includes
automated authentication of bank cheques and legal documents. Additionally, equipment
for the capture of offline signatures is cheaper, which will allow for greater adoption
of automated signature verification, especially for small-to-medium businesses and in
developing economies.

Due to security and privacy concerns, an automated offline signature verification sys-
tem requires techniques that can verify authentic signatures and reject forged signatures
with a high level of accuracy. However, offline signature verification systems have a low
accuracy in comparison to other biometric modalities, such as fingerprints and irises.

Accurate offline signature verification is an open problem in the area of biometrics.
This dissertation aims to improve verification accuracy through the use of distance-based
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classification techniques. In this chapter, the importance of improving offline signature
verification accuracy is highlighted; insufficient distance-based classification in offline
signature verification is identified as the research problem; the aims and objectives are
specified to approach solving the research problem; and how these objectives are met is
summarized.

1.3 Research Problem

Offline signature verification systems have much potential for world wide usage, but
are hindered by low accuracy rates. These low accuracy rates are due to the inherent
randomness that is characteristic of behavioural biometrics. Static signatures also have
much less information in comparison to online signatures, since the time dimension is
not present.

There are many current research attempts to improve the accuracy of offline signature
verification systems through the use of various techniques. Some of the research focuses
on feature extraction techniques. These are designed to extract the most relevant and con-
stant features of a signature while also attempting to reduce the extraction of features that
are not stable or constant in an individuals signatures. Other research concentrates on us-
ing different classification techniques and finding the optimal classification technique for
a particular feature set. Classification can be categorized into supervised learning tech-
niques (SLTs) and distance-based measures. Most work with classification concentrates
on using different SLTs, such as support vector machines, hidden Markov models and
artificial neural networks. There is very little research into using different distance-based
classification techniques, except for the Euclidean distance, which is the most commonly
known distance measure in geometric space.

There are many other distance-based measures that could be used for classification.
In comparison to SLTs, Distance-based measures have the potential for equal or more
accurate classification; they are less complex and easier to implement; and their training
and classification times may be faster. This work investigates the use of some of these
techniques and applies them to various different feature extraction techniques to measure
their classification accuracy.

1.4 Research Objectives

This work aims to improve the accuracy of offline signature verification systems by in-
vestigating various classification techniques. To achieve this, the following questions are
investigated.

• Can distance-based classification techniques perform better than SLTs at verifying
offline signatures?

• Which distance-based classification technique works best in signature verification
systems?

• Does the classification accuracy translate across the use of multiple different fea-
ture extraction techniques?

2



1.5 Contributions of the Dissertation

The following contributions are made from this dissertation.

• Various different distance-based classification techniques are investigated.

– The cosine similarity measure, Mahalanobis, Ratio, Canberra and various
LP -space distances are investigated as alternatives to SLTs in signature veri-
fication.

– Fractional distances, in LP -space, are investigated to improve verification ac-
curacy over the Euclidean and Manhattan distances by combating the concen-
tration phenomenon and non-Gaussian randomness within the feature vec-
tors.

– The weighted Euclidean distance is investigated to improve verification over
the Euclidean distance by normalization of the feature vectors and adding
statistical importance to the most stable features.

– The weighted fractional distance, a novel classification technique obtained
from the fusion of the weighted Euclidean distance and fractional distances,
is presented. Its use is investigated to further improve the accuracy of offline
signature verification systems.

• Multiple feature extraction techniques are used to verify the results of applying
distance-based classification techniques to offline signature verification.

– The effect of local features (Modified Direction Feature and Local Direc-
tional Pattern Feature) and global features (Energy, Ratio and Maxima fea-
tures), and the effect of combining both types of features on distance-based
classification techniques, are investigated.

– Individually optimized resampling is investigated to improve the classifica-
tion of local features.

• The best results from the distance-based classification are compared with results
from literature to determine which of the distance-based classification techniques
perform better than SLTs.

1.6 Dissertation Outline

The rest of this dissertation is ordered as follows.

• Section 2: reviews the literature and provides background of the topic.

• Section 3: describes the methodology and techniques employed in this research.

• Section 4: discusses the results obtained from applying the methodology and vari-
ous techniques.

• Section 5: concludes the dissertation and discusses potential avenues for future
work.
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• Appendix: contains the conference papers and journal articles associated with this
work.
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Chapter 2

Background and Literature Review

2.1 Introduction

Offline signature verification is an ongoing research topic in the field of biometrics. In
this chapter, a review of databases, feature extraction techniques, statistical performance
measures and classification techniques are discussed in relation to the signature modality.
Issues related to the classification of offline signatures will be highlighted.

2.2 Biometrics

Biometrics involves the measurement of one or more intrinsic physiological or behavioural
human characteristics to verify or identify a person. It is often used as part of identity
access management systems, for access control, recognition, identification and authenti-
cation of individuals [29].

2.2.1 History of Biometrics

Unique characteristics have been used to identify individuals for thousands of years,
with records dating back to the Ancient Egyptian and Chinese civilizations [25]. In the
1800’s biometrics were formalized and began being used in crime solving investigations.
Alphonse Bertillion, Paris Prefecture of Police’s chief of criminal identification division,
developed and practiced the idea of using several head and body measurements to iden-
tify criminals [29]. At the same time, Scottish doctor Henry Faulds learned of the ancient
Japanese practice of identifying the creator of pottery by embedded fingerprints. This
lead him to publish an article on the forensics of fingerprints which were later adopted
by Scotland Yard [15]. Later, Edward Henry, Azizul Haque and Hemchandra Bose, of
the Bengal Police, together developed the Henry classification system to improve the
identification time of fingerprints, which is the basis of many modern fingerprint iden-
tification systems. These are now used by criminal justice organizations the world over
[63].

While fingerprints remain the biometric modality of choice for individual identifi-
cation, many others, face recognition for example, have been researched over the past
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few decades. Traditionally, a photograph of an individual was matched to the individ-
ual in real time, using manual human intervention. Systems are now being developed
to automatically analyse an individual’s face in three dimensional space in an attempt to
improve the robustness and correctness of the technique [32].

Other examples of biometrics include handwritten signatures, retina blood vessel pat-
terns, hand geometry and iris biometrics, with the iris being regarded as the best practical
biometric modality for recognition and verification at the moment. There is also research
into using DNA as a biometric modality but this is currently hampered by the low accu-
racy, slow speeds and high cost of hardware used to analyze DNA [65].

The most important factors to consider when choosing a biometric system are uni-
versality, distinctiveness, permanence, collectibility, overall performance of the analysis,
public acceptability and possibility of circumvention. For practicality, a biometric sys-
tem must be accurate, fast, non-resource intensive, harmless to users, be accepted by the
target population and robust in terms of security [29].

2.2.2 Modalities

Biometric traits, or modalities, can be split into two broad categories, namely, physi-
ological and behavioural. Physiological biometrics are intrinsic, constant traits of the
human body. They are a measure of physiological and anatomical characteristics. These
are constant, without much change throughout a person’s life. Behavioural biometrics
are manifestations of human activity, based on actions that are learned and regularly
repeated. These actions may deviate or change over a period of time. [13]

The commonly known physiological biometric traits include fingerprints, palm prints,
dental patterns, facial features, irises and retinas. Other new types of physiological bio-
metrics include infrared thermograms of the human face; vein patterns of palms and
fingers; the wrinkle patterns in knuckles; patterns in the nail bed of finger nails; skin
spectroscopy; ear prints; vibrations of the inner ear; dental radiographs; and DNA.

Behavioural biometrics can be put into 5 different subcategories [70]:

1. Motor skills: This is the most common category and the most useful for automated
recognition and verification of individuals. Modalities in this category include hand-
writing and signatures; voice; walking gait; movement of facial muscles and lips when
smiling or talking; eye movement in response to stimulation.

2. Authorship: unique traits of individuals in the way they structure sentences, their
choice of words, skills in artistry and programming style. These may be used to prove
identity or authors during criminal investigations but are not very useful for automated
authentication systems.

3. Direct Human-Computer Interactions (HCI): this is the quantification of skills exhib-
ited by individuals during interaction with electronic devices. It can be further split
into input device-based HCI, such as typing speed of key strokes and the movement
of electronic mice; and software interaction-based HCI such as gaming strategies.

4. Indirect HCI: These are digital footprints left by users during regular interactions
with electronic devices, such as network traffic; choices between GUI interaction and
keyboard shortcuts; storage activity patterns and audit logs.
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5. Purely behavioural: These are pure behavioural patterns created from the use of
unique individual knowledge and skills during the execution of mentally strenuous
exercises, such as car driving skills, behaviour under stress and credit card usage. The
measurement of ECG of heartbeats, EEG of brain patterns and latencies in cognitive
function also fall into this category.

Each biometric trait has its own set of advantages and possible uses. There is no
known biometric that is applicable for all possible security uses. Therefore, there is a
constant search for new biometric traits that can uniquely identify individuals [24].

Behavioural biometrics generally rely on muscular movement and therefore contain
an inherent randomness which is not present in physiological biometrics. This random-
ness makes biometric matching a greater challenge with behavioural biometrics. To
reduce the negative effects of this randomness, reference feature vectors are created
through the averaging of multiple records of a biometric trait, for an individual.

2.2.3 Verification and Recognition

Biometric authentication is categorized into verification and recognition. Recognition,
also called identification, is used to discern an individual of unknown identity. Verifica-
tion is used to affirm an individual’s claim to a specific identity.

2.3 Signature Biometric Modality

Signatures, which are one of the oldest used and most widely accepted biometric for
identification and verification [73], are handwritten depictions of a person’s name, nick-
name or other personal symbol. They are classified as a behavioural biometric trait, and
are most often used for the verification of a signer’s identity.

2.3.1 Online and Offline Formats

The capturing of signature information can be either online or offline. Offline record-
ing is the capture of a completed static signature image. This can be via scanning of
a signature on a page, photography or an offline style writing pad. Online signatures
are a dynamic recording of the signature creation as a function of time, i.e. how much
of a signature is created per unit of time. These can be recorded via video camera or
recording pen, but are most often recorded with high quality writing pads. Depending
on the technology and cost of equipment, online signatures can capture additional infor-
mation such as the angle or pressure of the pen used to write the signature. Due to the
additional information present in online signatures, and the difficulty of forging a signa-
ture at the exact same pace as the original signature writer, online signatures generally
provide higher authentication accuracy in comparison to offline signatures. Online sig-
natures also nullify the disadvantage of publicly visible signatures. However, there are
some cases in which online signatures can not be used, such as with bank cheques. Ad-
ditionally, small to medium businesses may not be able to afford the higher cost of online
recording equipment. Thus, a system that uses financially more cost effective equipment
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will allow smaller businesses access to better security solutions, both in developed and
developing countries. In this work, an offline biometric signature verification system is
investigated.

2.3.2 Advantages and Disadvantages

There are seven key aspects that need to be analyzed when weighing the advantages and
disadvantages of a biometric trait. These aspects are, in no particular order: uniqueness,
permanence, acceptability, collectability, universality, resistance to circumvention and
performance [13]. The strengths and weaknesses of signatures are discussed below, in
terms of each of these aspects.

2.3.2.1 Disadvantages

One of the greatest disadvantages of signatures is that they are very public, since they are
visible throughout a person’s legal documents. This makes it easy for potential forgers to
obtain samples of a user’s signature to practice copying. This is a greater disadvantage
for offline signatures than for online signatures. The latter contains dynamic information
which lowers the probability of successful security circumvention via forgeries. Users of
a signature verification system must be educated on security measures and encouraged
to create more complex signatures to protect against skilled forgeries.

While signatures are easily collectible, the use of low quality capturing equipment
can distort the data and negatively affect the accuracy of the system. An investment in
good quality devices is important to reduce the risk of distorted or noisy data. While most
people are willing to use signatures as a form of personal identification, the illiterate and
physically disabled provide a hurdle to the universal application of signature verification.
The former group, illiterate individuals, is a shrinking minority. However, systems are
required to cater for those who do not have full use of their hands and are thus incapable
of writing signatures. A possible method to overcome these problems is to create multi-
modal biometric systems which combine signatures with other biometrics.

Another disadvantage is that signatures are not infinitely permanent. They tend to
change over a long period of time. To overcome this, systems often require that refer-
ence signatures, also called specimen signatures, be updated at regular intervals, which
may require additional interaction with users and potential inconvenience. Signatures
also have smaller variations every time they are written. This randomness is inherent
to most behavioural biometrics. It is overcome to a large extent by creating reference
feature vectors by averaging multiple authentic feature vectors. However, this requires
additional user interaction when new individuals are added to the system so that a suffi-
cient number of signatures can be stored and used for training and testing. Furthermore,
the quality and accuracy of signatures, like many behavioural biometrics, can be nega-
tively affected by a user’s current emotional state. This means that if a user is distressed
or in a hurry, their signature may be significantly different than when written in a calm
state of mind. Signatures are also often written at different angles onto the page or other
capturing medium. This requires many feature extraction techniques to adjust for the
angular difference during preprocessing.

8



2.3.2.2 Advantages

The lack of permanence also has advantages. If a system’s security is compromised
or a user’s signature is successfully forged, a new signature can be easily created, thus
nullifying the security risks. Conversely, if the storage of physiological biometrics is
compromised, it is a much more serious matter, since physiological biometric traits of an
individual cannot be changed at will. The only potential recourse for the compromise of
a physiological biometric system is to change the feature extraction techniques. A user
can also have more than one signature in use concurrently, such that a different signature
is used for authenticated access of different systems or even different areas of the same
system.

Signatures also have a high degree of public acceptance and are easily collectible.
Due to centuries of regular use, the general public is relatively comfortable with the
recording of signatures and have a high degree of trust in the recognition, storage and
use of signatures. Signatures are also less personal, not private and are non-invasive.
In comparison, users may be uncomfortable with the digital recording of more personal
physiological information such as their fingerprints and facial features. Trust and accep-
tance of signature systems can be further increased by systems that do not store the actual
signature, but rather only store extracted information from the signatures. High quality
capturing devices are inexpensive, especially for offline signatures. Low entry-level costs
and public acceptance can promote fast adoption of signature verification systems in in-
dustry.

Signatures are also used throughout the world, by almost all people, with the excep-
tion of physically disabled and illiterate minorities. This makes a universal transition
from paper-based to electronics-based signature systems a credible possibility. It also
means that users do not require special training when signature-based biometric security
systems are implemented.

Each person creates their own unique signature, which is most usually based on their
name. Even if two users share the same name, their writing styles will be significantly
different. The level of uniqueness is even higher for online systems, where dynamic
information is stored. This is especially advantageous for signature recognition systems.

Due to the use of dynamic information, online signatures have very high performance
accuracy. However, offline systems have lower, less accurate performance. Due to the
lower cost of high quality offline equipment in comparison to online equipment, and due
to instances where online signature cannot be used, developing good offline verification
is an important research topic.

2.3.3 Signature Databases

Using pre-compiled, publicly available signature databases is preferred over compiling
a private signature database. This is due to the high cost in terms of time and monetary
expenses that are incurred in creating these databases, which require both authentic and
skilled forgeries. Further, the use of widely accepted signature databases allows better
comparison between the works of different researchers. The most commonly used sig-
nature dataset for offline signature testing are the GPDS, MCYT and SVC2004 datasets.
The first contains purely offline information, while the other three contain both online
and offline information.
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2.3.3.1 GPDS

The Grupo de Procesador Digital de Senales (GPDS) signature database [66] is a collec-
tion of offline signatures that were captured by scanning signatures written onto paper.
The GPDS300 corpus contains black and white signatures for 300 individuals, with 24
authentic signatures and 30 skilled forgeries per individual. This gives a total of 16200
signatures in the database, of which 7200 are authentic and 9000 are skilled forgeries.
All signatures are written in Latin script. For the creation of skilled forgeries, the po-
tential forgers were provided with authentic copies of user’s signatures. They practiced
copying these signatures until confident of their forgery skill. Only then were skilled
forgeries added to the database. For each individual, 4 forgers were used. All authen-
tic signatures for an individual were captured during a single sitting. For the testing of
random forgeries, random authentic signatures of different individuals were chosen. A
larger GPDS corpus of 960 individual’s signatures (GPDS960) is commercially avail-
able, while smaller corpuses of 75 (GPDS75) and 160 (GPDS160) individuals are also
publicly available.

2.3.3.2 MCYT

The MCYT multimodal biometric database [53] contains fingerprint, online signature
information for 330 individuals. For the signature subcorpus, 25 authentic and 25 forg-
eries are captured for each individual, using a WACOM pen tablet. This gives a total
of 16500 signatures in the database, of which 8250 are authentic and 8250 are skilled
forgeries. Authentic signatures were captured in sets of 5. For skilled forgeries, 5 forgers
were used, writing 5 forged signatures each. The forgers practiced the forgeries after
observing offline (static) copies of the signatures. Although it is designed as an online
signature database, the tablet also captures offline information that is used for testing of
some offline signature verification systems.

2.3.3.3 SVC2004

The SVC2004 signature database [71] was created for the First International Signature
Verification Competition, held in 2004. The complete database hold authentic and forged
online signatures for 100 individuals, but only 40 of these were initially made available
for earlier tests. Signatures were captured using the WACOM Intuos writing tablet. For
each individual, 20 authentic signatures were captured over 2 sittings, i.e. 10 signatures
per sitting. To allay privacy concerns, users designed new signatures and were allowed
to practice these new signatures on the capturing device as much as they wanted before
recording and storage to the database was performed. They were also allowed to remove
instances of their signatures with which they were unsatisfied. Additionally, 20 skilled
forgeries per individual were created, using at least 4 forgers. This gives a total of 4000
signatures in the database, of which 2000 are authentic and 2000 are skilled forgeries.
The forgers observed the online creation of signatures before practicing and entering
their forgeries into the database. The database contains some signatures using Latin
characters and some using Chinese characters. This database contains fewer individuals
and less information per individual in comparison to the GPDS and MCYT signature
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databases, especially for those researchers that had access to the signatures of 40 indi-
viduals only. This brings into question the accuracy and precision of results obtained
with this database, as larger datasets allow for more consistency in results.

2.3.3.4 Other signature databases

There are many other less commonly used signature databases such as: Dolfing’s dataset
[17] with signatures of 51 individuals from Germany; the SIGMA database [2] with
213 individuals from Malaysia; the CEDAR database, which has authentic and forged
signatures for 55 individuals [51]; the Stellenbosch database [14] with 22 individuals
from South Africa; the FUM-Persian Handwritten Signature Database (FUM-PHSDB)
[52] with 20 individuals from Iran; an Indian database [60]; a Turkish signature database
[54] with authentic signatures from 40 individuals; and the BioSecure DS2 database with
European signatures of 330 individuals as part of a commercially available multimodal
database [22]. Many of these databases are small, containing sets from a limited number
of individuals. System accuracy tends to decrease as datasets become larger, as there is a
greater chance of users with signatures that are easily forged. The effect of database size
can be seen in the results of [21]. Larger datasets provide more precise results.

The GPDS is the most easily available, has among the largest number of signatures
and is regularly used in literature. This makes is best suited for comparison between
different literature works.

2.4 Feature Extraction

Feature extraction is split into 2 categories: local features and global features. Local
features refer to feature extraction techniques that treat patterns holistically and provide
in-depth information of an image by analyzing individual parts of a pattern. Conversely,
global features refer to feature extraction techniques that extract information from an
overview of the image. This makes them less affected by noise and variations in the
image, but means that they extract less information. Most recent work utilizes the com-
bination of multiple feature extraction techniques into a single feature vector. This yields
higher accuracies than using just a single feature extraction technique.

In Armand et al. (2006) [5], Armand et al. (2007) [6] and Nguyen et al. (2007) [49]
the Modified Direction Feature (MDF), which is a local feature, is combined with several
global features. These features are the Ratio, Length, Centroid, Tri-surface, Sixfold-
surface and Best Fit features. These are all combined to create the Enhanced MDF.
Nguyen et al. (2007) [49] reports a best EER of 17.78% with an FARR of 0.16%. While
the two earlier papers report higher accuracies, they also used much fewer signtures for
testing. In Nguyen et al. (2009) [48], the MDF is combined with the Ratio, Energy and
Maxima features to create the Extended MDF (EMDF) feature which provides a better
result than the Enhanced MDF. The best EER for the EMDF was 17.25%, with an FARR
of 0.08%. The Local Binary Pattern (LBP) and Local Directional Pattern are compared
in Ferrer et al. [21]. The LDP performed better with an EER of 17.8% and FARR of
0.68%. Yilmaz et al. [72] combine the LBP with a histogram of gradients (HOG) along
with a fusion of SVM classifiers to obtain and EER of 15.21%.
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2.5 Biometric Performance Measures

The most important performance indicator of traditional biometric systems is the recog-
nition accuracy which is expressed in terms of the False Rejection Rate (FRR) and False
Acceptance Rate (FAR). These are also sometimes called the false negatives and false
positives, respectively. In verification systems, it is important to achieve the lowest pos-
sible FRR and FAR to achieve the best recognition accuracy for a biometric system.
These are expanded upon below.

2.5.1 False Rejection Rate

The False Rejection Rate (FRR) is a measure of the probability that the system will
reject an authorized user. It can be expressed mathematically for a set of authentication
attempts against a single individual as

FRR(n) =
unsuccessful authentication attempts of authorised individual n

total authentication attempts of authorised individual n
×100 (2.1)

For improved precision and accuracy of results, a large set of signatures from dif-
ferent individuals must be used. Therefore, for N number of individuals, the equation
becomes

FRR =
1

N

N∑

n=1

FRR(n) (2.2)

2.5.2 False Acceptance Rate

The False Acceptance Rate (FAR) is a measure of the probability that the system will
accept an unauthorized user. It can be expressed mathematically for a set of forgery
attempts against a single individual as

FAR(n) =
successful forgery attempts of unauthorised individual n

total forgery attempts of unauthorised individual n
× 100 (2.3)

For improved precision and accuracy of results, a large set of forged signatures
against different individuals must be used. Therefore, for N number of individuals, the
equation becomes

FAR =
1

N

N∑

n=1

FAR(n) (2.4)

FAR is often determined separately for skilled forgeries (FARS) and for random forg-
eries (FARR).
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2.5.3 Equal Error Rate

The Equal Error Rate (EER) is the point where FRR and FARR are equal. This is used
to gauge the accuracy of the system.

2.5.4 ROC-Curve

The receiver operating characteristic curve (ROC-curve) is often used in calibrating sig-
nature verification systems. It is a plot of FRR and FAR percentages at different thresh-
olds. This allows for easy determination of the EER, where the FRR and FAR are equal.
Additionally, by using a ROC-curve, the threshold can be dynamically adjusted in real
world systems. For example, in a scenario of an individual with a large bank balance,
the threshold can be adjusted to a point on the ROC-curve where the FAR is lower than
the EER, and the FRR is higher than the EER. This will provide greater security against
forgeries, in comparison to the EER [7].

2.5.5 Average Error Rate

The Average Error Rate (AER) is used in place of the EER when the system is not
calibrated to have an equal FAR and FRR, such as in [7]. It is a calculation of the total
error, along with a priori probabilities.

2.6 Literature Survey of Offline Signature Classification
Techniques

Many techniques exist for the classification of signatures and other biometrics. They can
be broadly categorized into supervised learning techniques (SLTs) and distance-based
classification techniques. SLTs include neural networks [27], hidden Markov models [7],
support vector machines [48] and fuzzy logic [31]. Linear techniques include Euclidean
distance, Mahalanobis [35], Manhattan distance, weighted Euclidean distances [75] and
fractional distances [68].

2.6.1 Supervised Learning Techniques (SLTs)

SLTs use complex mathematical and statistical models to predict the class into which a
signature’s feature vector belongs. The most commonly used SLTs are hidden Markov
models (HMM), support vector machines (SVM), artificial neural networks (NN) and
fuzzy logic. Recently, there is also much research in classifier fusion, where a multi-
hypothesis approach combines an ensemble of different classifiers or classification of
different feature extraction techniques.
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2.6.1.1 Hidden Markov Models (HMM)

HMMs are a form of SLT. They are used to analyze the sequence of data points in a
feature vector [3]. It was first documented by Baum and Petrie in 1966 [9].

Shakil et al. [59] compares the performance of several online and offline feature
extraction techniques with HMM classification, using the SIGMA database of Malaysian
signature [2]. The EER values for offline features were between 45 and 46%, which
signifies a low accuracy. Coetzer et al. [14] applies HMM classification to discrete
Radon transform, which is a global feature, and achieves an EER of 12.2% using skilled
forgeries and 4.5% using random forgeries. Panton and Coetzer further improves the
EER to 8.6% by using a fusion of HMM classifiers and adding local features to the
feature vector [55]. These results are achieved using the small Dolfing and Stellenbosch
datasets, since larger datasets were not yet publicly available. However, the results are
among the best results obtained when using these specific databases. Ferrer et al. [20]
compares the Euclidean distance, HMM and SVM, using geometric features based on
Cartesian and polar coordinates. Signatures of 160 individuals from the GPDS database
are used. This is a larger dataset than the Dolfing and Stellenbosch datasets, and larger
datasets provide greater precision through the use of more datapoints. It is found that in
[20], the best performance is for HMM, with an FRR of 14.1% and FAR of 12.3% for
skilled forgeries. The SVM performs better than the Euclidean distance, but worse than
the HMM.

Batista et al. [7] proposes a multi-hypothesis approach with a best AER of 7.79%.
This multi-hypothesis approach is designed such that the most suitable HMM from sev-
eral is dynamically chosen per individual, and user-specific codebooks are employed.
A codebook is used to define discrete clusters of feature vectors, where each cluster is
associated with a single individual. It is shown that a multi-hypothesis approach works
better than a single-hypothesis approach, and that user-specific codebooks work better
than codebooks with clusters for multiple users. User-specific codebooks also allow eas-
ier addition and removal of users from a database, since large portions of the database
will not require re-training. However, this approach is computationally expensive, in
comparison to single-hypothesis classification, due to the use of more than one classifier.

2.6.1.2 Support Vector Machines (SVM)

SVM classification is based on algorithms of statistical learning theory [3]. The tech-
nique was first documented by Cortes and Valpiniki from Bell Labs in 1995 [16]. These
are kernel based techniques for supervised learning. The most common kernels are the
polynomial and radial basis function kernels. It can be used for both linear and non-linear
approximations.

Yilmaz et al. [72] performs SVM classification on a combination of gradient-based
and binary pattern-based features, extracted from the GPDS160 database, achieving a
best AER of 15.41%. It is found that user-dependent, also called user-specific, classifiers
work better than a globally applied classifier for all users. Low et al. [41] proposes a
unique method where a signature is embedded in an image with SVM biometric water-
marking (SVM-BW), so that the biometrics are secured until extracted from the image.
Feature extraction is performed using discrete Radon transform and principle component
analysis. Vargas et al. [67] proposes a system with least squares SVM classification on
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features extracted from the Fourier transform of a signature image, using the GPDS100
database. An EER of 6.20% is obtained, which, is shown to perform better than similar
techniques, using the same database. Kiani et al. [34] applied an SVM with RBF kernel
to a combination of Local Radon Transform and Line Segment features. The results are
compared with Panton and Coetzer [55], which applied an HMM to Local Radon Trans-
form. The SVM worked better for the Persian database, but worse for the Stellenbosch
database.

Nguyen et al. [50] compares squared Mahalanobis distance and Gaussian kernel
SVM classification on a local gradient-based feature extraction. The AER for the SVM is
15.02%. The gradient distance with SVM classification performs better than the squared
Mahalanobis distance, and better than previous tests with MDF feature extraction and
SVM classification. Batista et al. [8] designs a multi-hypothesis approach where a fur-
ther classification stage, using an ensemble of SVMs, is added to their HMM-based
multi-hypothesis approach from [7]. When used individually, the ensemble of SVMs
performs better than the HMMs. Once combined, an AER of 5.50% is achieved. How-
ever, the fusion of multiple classifiers negatively affects the speed efficiency of classi-
fication, since more processing is needed for training and classification. Additionally,
fusing the best single-hypothesis classifiers into a multi-hypothesis approach leads to the
best classification. Therefore, it is still essential to find the optimal single-hypothesis
solutions before the successful implementation of a multi-hypothesis approach.

2.6.1.3 Artificial Neural Networks (NN)

NNs are mathematical models designed to mimic the behaviour of neurons in the human
brain. It was first conceptualized by McCulloch and Pitts in 1943 [44] and first success-
fully implemented in software, by Widrow and Hoff of Stanford in 1960, to reduce phone
line echoes [69]. NN also use kernels. The most common forms are back-propagation
multi-layer perceptrons (BP-MLP) and radial basis function (RBF) kernels. NNs can be
designed for temporal adaptation. This is a useful feature for signature authentication,
since a user’s signature changes over a period of time. There is much research involv-
ing NNs for offline signature classification. Some of the recent and notable works are
discussed here.

Kovari et al. [36] uses NNs for classifying a feature vector comprised of both lo-
cal and global features. Tests are performed using 40 individual’s signature sets from
the SVM database. While the database is small in size, the use of machine generated
artificial forgeries is an interesting and novel approach. However, a poor EER of over
20% is achieved. Miskhat et al. [47] compared NN and SVM with a fusion of feature
extraction techniques, on signatures from 30 individuals. An NN with a feed-forward
back-propagation kernel produced better results than the SVM classification. However,
no skilled forgeries were used in their tests. It is unknown if random forgeries were
used during training and testing and the calculations for the accuracy measure are not
specified.

Kumar et al. [38] uses and MLP NN to select the best subset of feature from a
feature vector before classification via SVM. An EER of 11.59% is acheived. Mirzaei
et al. [46] uses modular NNs to classify three different feature vectors. The results
from these three classifiers are then fused, using the Mamdani fuzzy inference system.
Using a private signature dabase comprising of authentic signatures from 30 individuals,
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and no forgeries, a recognition accuracy of 96.6% was acheived. Sisodia et al. used
an error back-propagation NN to classify signatures from 6 individuals and obtained
promising results. Armand et al. (2007) [6] tested the Enhanced MDF with a fusion
of NN classifiers. However, the tests were performed using just 44 signatures from the
GPDS database. Multi-hypothesis fusion of NNs with other NNs, or with other SLTs, is
a promising approach for improving accuracy, but is computationally expensive, since it
requires each signature to be classified multiple times.

Nguyen et al. (2007) [49] compares NNs and SVMs with different kernels with the
Enhanced MDF, using the GPDS160 database. An SVM with an RBF kernel produced
their best EER of 17.78%. Nguyen et al. (2009) [48] compares NN and SVM classifica-
tion with various kernels and the Extended MDF (EMDF) feature extraction, also using
the GPDS160. The SVM provided the best EER of 17.25%. This is more reliable than
earlier work [5, 6] where signatures of less than 45 individuals were used.

2.6.2 Distance-based Classification Techniques

Besides SLTs, the other classification techniques can be categorized as distance-based
classification techniques. Distance measures are used to calculate the amount of differ-
ence, or distance, between two feature vectors: a reference feature vector and a sample
feature vector. The reference feature vector is created by averaging several authentic fea-
ture vectors for an individual. This makes it a standard reference point to which other
signatures’ feature vectors, sample feature vectors, are compared. If the difference is
below a chosen value, or threshold, the sample feature vector is regarded as authentic,
else it is regarded as a forgery.

2.6.2.1 Euclidean Distance

The most well known distance-based measure is the Euclidean distance. It is attributed
to the Ancient Greek mathematician Euclid, who developed Euclidean geometry. It was
also previously known as the Pythagorean metric, as it is used to calculate the distance
between points in a Cartesian plane, as part of the Pythagorean Theorem. It is a distance
calculated in LP -space, also called Lebesgue space, where the p-norm value is 2, or the
L2 distance. There are many works that have used the Euclidean distance for authentica-
tion. Some notable and recent works are discussed.

Shekar et al. [60] uses the Euclidean distance for the verification of feature vectors
which are created using an Eigenvector-based feature extraction technique. Different
sizes of feature vectors are tested, and a single globally applied feature vector size is
eventually chosen. An EER of 14.33% is acheived when using 10 signatures for training
and 14 for testing. A better EER of 8.78% is also acheived when using 15 signatures
for training and 9 for testing, but it is noted that in compared works, the former con-
figuration of training and testing samples wre usually used. The former configuration
is more commonly used since there are more signatures for testing, leading to greater
precision of results. Rekik et al. [57] tests global and local feature extractions with Eu-
clidean distance classification, and concludes that a fusion of local and global features
performs better than using local or global features independently. Tests are performed
on 50 individuals from BioSecure DS2 and on the GPDS104 database. The best EER
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obtained with skilled forgeries is 14.2% and 4.8% using random forgeries. However, the
fusion approach was not tested with the larger GPDS104 database. Ramachandra et al.
[56] finds the smallest Euclidean distance between cross-validated graphs of signatures,
using the Hungarian method [37]. Various feature vector sizes are tested on signatures
from just 5 individuals, and an EER of 27.78% is acheived using skilled forgeries and
6.25% using random forgeries for two different vector sizes. In comparison with other
literature, this is a poor accuracy obtained using a very small dataset. Majhi et al. [43]
applies Euclidean distance classification to feature vectors based on geometric centres of
several regions in an image. An FRR of 14.58%, FARR of 2.08% and FARS of 16.36%
are obtained.

Kisku et al. [35] documents an interesting technique in which local and global feature
extractions are performed, and the results of Euclidean distance, Mahalanobis distance
and Gaussian empirical rule from these feature vectors are fused together using SVM.
A private Indian signature database is used, with 9 authentic signatures and a single
forged signature for each of 180 individuals. Individually, each classification technique
performs very well with EER values below 10%, and combined, a best EER of 2.15%
is achieved. This multi-hypothesis approach shows great promise, although tests with
signatures from other global locations, and tests with more skilled forgeries, are required.

Ferrer et al. [20] performs a comparison between the Euclidean distance, HMM
and SVM, using geometric features based on Cartesian and polar coordinates. The best
Euclidean distance obtained was with FARS of 15.50% and FRR of 16.39%. However,
the HMM and SVM performed better, as discussed in Section 2.6.1.

2.6.2.2 Mahalanobis Distance

The Mahalanobis distance was first documented in 1936 by Prasanta Mahalanobis [42].
It performs best with multivariate normal data distributions [30]. Some notable and re-
cent works are discussed.

Fang et al. [19] performs one of the earliest classifications using the Mahalanobis
distance, with a best EER of 19.1%. Nguyen et al. [50] compares squared Mahalanobis
distance and SVM classification on a local gradient-based feature extraction. The AER
for the squared Mahalanobis distance was 16.52%, but the SVM performed a little bet-
ter, as discussed previously in Section 2.6.1.2. Sigari et al. [62] performs Mahalanobis
distance classification on features extracted using Gabor wavelets. Verification tests are
performed on 3 signature databases which are based on Iranian and Latin (South African
and Turkish) scripts. EER values of 15.0%, 16.8% and 9.0% are obtained respectively.
While these values are promising and performed across a wide range of scripts and cul-
tures, it must be noted that each of these signature databases contained signatures of
just between 20 and 40 individuals. The proposed system is also shown to outperform
humans at discerning between authentic and forged signatures.

Kisku et al. [35] employs the use of the Mahalanobis distance in their combination of
classifiers and previously described in 2.6.2.1. From the classifications without combina-
tion, the Mahalanobis distance performs better than the Euclidean distance and Gaussian
classifier, for the chosen set of feature extraction techniques.
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2.6.2.3 Canberra Distance

The Canberra distance was developed by Lance and Williams between 1966 and 1967 in
Canberra, Australia [39]. It is the sum of the ratio set between points in two vectors. It is
a less common distance measure, which, to the author’s knowledge, was not previously
used for signature verification. However, it is used in Shirdhonkar and Kokare [61] for
offline signature retrieval, as a step towards signature recognition, with promising results.

2.6.2.4 Cosine Similarity Measure

The cosine similarity measures the similarity between two vectors by calculating the an-
gle between each set of points. It is not a commonly used classification technique for
offline signature verification. It is used in Impedovo et al. [26] to measure the suitabil-
ity of local stability features. However, no information is reported on the accuracy of
the stability features in classification of signatures. Thus, no accuracy information is
available.

2.6.2.5 Manhattan Distance

The Manhattan distance is another p-norm distance in LP -space, where p = 1. It can
also be called the L1 distance, or city block distance. While the Euclidean distance is the
shortest distance between points, the Manhattan distance is a sum of the absolute differ-
ence of the points. It was first documented by Hermann Minkowski. Although similar to
the Euclidean distance, it is not a commonly used technique for offline signature verifi-
cation. It is used for offline signature recognition in Adamski and Saeed [1], as well as
in Ismail et al. [27].

2.6.2.6 Weighted Euclidean Distance

The weighted Euclidean distance is a normalization of the Euclidean distance, where
statistical weight or importance is given to each feature in the vector based on its stan-
dard deviation. The standard deviation is calculated from the signatures that make up
the reference feature vector. Features with a lower standard deviation have smaller dif-
ferences between multiple signatures of the same author. Therefore, these features are
given greater weight in the weighted Euclidean distance classification.

It is not a commonly used classification technique. Zhu et al. [75] uses the weighted
Euclidean distance for iris recognition in 2000. Kalera et al. [45] adapts the weighted
Euclidean distance to a weighted k-nearest neighbour classification for offline signature
recognition. However, the weighting function is a unique similarity measure rather than
the standard deviation. A Bayesian classifier is used for the verification. Alizadeh et al.
[4] uses the weighted Euclidean distance for online signature verification.

2.6.2.7 Fractional Distances and the Concentration Phenomenon

The fractional distance is another distance in LP -space where the p-norm value, also
called the Minowski norm exponent, is any fractional value less than 1. Francois and

18



Wertz [23] discusses the use of fractional distance as an alternative to the Euclidean
distance to counteract the concentration phenomenon. This phenomenon is when large
feature vectors cause the results of the Euclidean distance to concentrate, or cluster. This
clustering of values, which is an intrinsic property of LP -space distances, makes clas-
sification difficult for large feature vectors. Fractional distances generally produce less
concentrated results than the Euclidean distance, which allows for better classification of
datasets.

Francois et al. [23] states, “Fractional norms are not always less concentrated than
other norms. They seem, however, to be more relevant as a measure of similarity when
the noise affecting the data is strongly non-Gaussian.” Much of the noise generated by
behavioral biometrics is due to random variations in human action, that may not follow
a normal distribution. This makes fractional distances a viable investigative route of
classifying offline handwritten signatures.

Fractional distances have not been used in offline signature verification before. How-
ever, they are used for online signature recognition in Vivaracho-Pascual et al. [68], and
for face recognition in Espinosa-Duró et al. [18].

2.7 Conclusion

In this chapter, signatures as a biometric modality were discussed along with its advan-
tages and disadvantages. Distinctions were specified between offline and online record-
ing, as well as between recognition and verification. Existing signature databases, fea-
ture extraction techniques, performance measures and classification techniques were dis-
cussed. There is much research into the use of SLTs for the verification of signatures, but
much less for distance-based techniques for classification. Some work exists on testing
different feature vector sizes for optimal classification in specific cases, as well as choos-
ing the local optimal classifier per individual. However, there is no work, to the author’s
knowledge, on localized optimizations in terms of resampled feature vectors for offline
signature verification. Then next chapter discusses the methodology and techniques used
to obtain high accuracy through the use of distance-based classification techniques.
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Chapter 3

Design and Methodology

3.1 Introduction

In this chapter, a discussion is provided on the roles of preprocessing, feature extraction
and classification in an offline signature verification system. Each of the preprocessing
techniques that are used and the feature extraction processes that follow are discussed.
Several classification techniques are applied to the extracted feature vectors in order to
discover the best possible distance-based classification technique. These classification
techniques are described after the discussion on the feature extraction techniques.

3.2 Design Overview

Figure 3.1 shows the overview of the verification system. The three main steps in a bio-
metric verification system are preprocessing, feature extraction and classification. Pre-
processing prepares the signature image for the extraction of features which are then used
to classify the signature as authentic or forged. The preprocessing techniques used in this
work include binarization, bounding box extraction, thinning and dilation. For feature
extraction, the Extended Modified Direction Feature (EMDF) and the Local Directional
Pattern (LDP) features are used. Each feature extraction technique requires a different set
of preprocessing techniques. For classification, distance-based classification techniques,
such as the Euclidean, Manhattan and fractional distances are tested.

In the training phase, the reference feature vector is determined by averaging a sub-
set of randomly chosen authentic feature vectors. Sample feature vectors are obtained
from other authentic and forged signatures individually. The classifier is then trained to
determine the threshold that provides the optimal accuracy for the system, using sam-
ple feature vectors of known classification as input. In the testing phase, further sample
signatures are used, but the classifier will determine their classification independently
based on the threshold obtained from the training phase. Accuracy is gauged based on
the number of signatures that the classifier correctly accepts as authentic and correctly
rejects as forgeries.
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Figure 3.1: Overview of the design of a biometric verification system

3.3 Preprocessing

Preprocessing entails the transformations performed on an image to prepare it for feature
extraction. Different preprocessing techniques are used as prerequisites for each of the
feature extraction techniques.

3.3.1 Binarization

Binarization is the conversion of greyscale or colour images into simpler black and white
images to allow faster processing and extraction of data.

Given a greyscale source image, I(x, y), and threshold greyscale value, T , the bina-
rized image, B(x, y) can be determined as

B(i, j) =

{
fg, if I(i, j) > T.

bg, otherwise.
(3.1)

where fg is the value for all foreground pixels and bg is the value for all background
pixels.
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3.3.2 Thinning

Some of the feature extraction techniques used in this work require the image to be of a
1–pixel thickness before feature extraction is performed. To create a 1–pixel thick skele-
ton of the signature images, the Zhang-Suen thinning algorithm, described in Zhang and
Suen [74], is used to allow a more direct comparison with literature results, which used
this thinning algorithm as well. The Zhang-Suen is one of the most commonly used thin-
ning algorithms for pattern recognition. However, it is designed for speed rather than ac-
curacy. It may lose connectivity between segments. More accurate thinning algorithms
exist, such as the Guo-Hall thinning algorithm, but these usually require much higher
processing time [33] in comparison to Zhang-Suen. Multi-thread or multi-processor
techniques are used to alleviate the constraints of computationally expensive thinning
algorithms. Figure 3.2 and figure 3.3 show samples of a signature before and after thin-
ning.

Figure 3.2: A sample of a signature before thinning and direction feature extraction

Figure 3.3: A signature after the Zhang-Suen thinning algorithm has been applied

3.3.3 Boundary Extraction

For uniformity between all signatures of an individual, the borders (bounding box) of
signatures need to be detected and all background pixels outside of the area discarded
[11]. The algorithm used for cropping the image is described in Algorithm 1 and an
example of an image before and after cropping to the bounding box is shown in Figures
3.4 and 3.5 respectively.
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Algorithm 1 Bounding box, Ibound, of a binarized image, Isrc
Require: Isrc, . Source image
Require: fgd, . The colour of foreground pixels
Ensure: Ibound, . Image transformed using bounding box

1: leftBorder = column in Isrc with leftmost fgd
2: rightBorder = column in Isrc with rightmost fgd
3: topBorder = row in Isrc with topmost fgd
4: bottomBorder = row in Isrc with bottommost fgd
5: Ibound(0, 0, x, y) = Isrc(leftBorder, topBorder, rightBorder, bottomBorder)

Figure 3.4: A signature image before boundary extraction of the signature occurs.

Figure 3.5: A signature image cropped to the bounding box size.

3.3.4 Dilation

For dilation a 3x3 pixel mask is applied to the image using the binary AND operation
on a binarized image. This expands the foreground and emphasizes the contours of the
image, which allows better extraction of some spacial structure features, such as the
Local Directional Pattern [21].

Given a binarized image I and a mask, M, defined as

M =




1 1 1
1 1 1
1 1 1
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Given each I(x, y) we want to compute its transform by dilation, ID(x, y) with the mask
M . It can be done by defining the function

FNCTOR(x, y) = (
−1∑

i=−n
2

n
2∑

j=−n
2

I(x+ i, y + j))

+(
−1∑

j=−n
2

I(x, y + j)) + (

n
2∑

j=1

I(x, y + j))

+(

i=n
2∑

1

n
2∑

j=−n
2

I(x+ i, y + j))

(3.2)

where
∑

and + are boolean sums. In this case n = 3.

The dilated pixel, ID(x; y), in the dilated image, ID, will be

ID(x, y) =

{
1 if FNCTOR(x, y) = 1,
I(x, y) otherwise.

(3.3)

Figures 3.6 and 3.7 show a signature before an after the dilation, respectively.

Figure 3.6: A standard black and white signature of a user before dilation preprocessing
is applied
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Figure 3.7: A standard black and white signature of a user after dilation preprocessing
using a 3× 3 OR mask

3.4 Feature Extraction

3.4.1 Choosing the Feature extractions

The Enhanced Modified Direction Feature (EMDF) and Local Directional Pattern (LDP)
feature extraction techniques were chosen to test the distance-based classification tech-
niques. When selecting feature extraction techniques several factors were taken into
account.

• Database: Both techniques were previously tested using the GPDS signature
database, which is also used in this work.

• Offline verification: The feature extraction techniques were designed for the ver-
ification of offline signatures.

• Local feature extraction: The feature vectors from both techniques were easily
re-scalable by resampling due to the nature of the local feature extractions.

• Classification: Both feature extraction techniques were previously tested with
SLTs. The MDF was tested with multiple types of NNs and SVMs, and the LDP
was tested with an RBF SVM. This allowed for more direct comparison with the
distance-based techniques employed in this work.

3.4.2 Direction Feature

The direction feature extraction technique was introduced by Blumenstein et. al. as
part of a optical character recognition system for segmented handwriting [11]. It aims
to extract the direction of each segment between intersections within a signature, i.e.
whether the segment is horizontal, vertical, diagonal left or diagonal right. The steps are
sequenced as follow:

1. Preprocessing: The image binarized, cropped to the bounding box area and then
thinned to a 1-pixel thickness using the Zhang-Suen thinning algorithm [74].
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2. Identification of intersections: Intersections are defined as any foreground pixel that
has more than 2 neighbouring foreground pixels.

3. Distinguishing of line segments: Line segments are defined as a continuous connec-
tion of foreground pixels of at least 4 pixels in length parameterized by intersections
or image borders.

4. Labelling of line segment: Each line segment is labelled with a direction based on the
direction of the majority of its pixels, as shows in Figure 3.8, where red represents
intersections; green, vertical segments; dark blue, horizontal segments; purple, 45◦

diagonal segments; light blue, 135◦ diagonal; and grey represents segments too short
to determine a segment direction.

Figure 3.8: In depth demonstration of direction feature extraction
(a) represents the original line, (b) the binary line, (c) after each pixels direction was
distinguished, (d) after the line segments direction as distinguished[11, 12]

A sample of a signature image after the direction feature extractions are applied is
shown in figure 3.9. Intersections are marked in red, vertical segments in green, hori-
zontal segments in dark blue, right diagonal segments in pink, left diagonal segments in
light blue and short ignored segments in grey.

Figure 3.8 shows an example of part of the process for distinguishing the direction of
line segments;

(a) shows the graphical representation of the line;
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Figure 3.9: A signature after the direction feature has been applied with different colours
for each type of line segment and for intersection pixels

(b) shows the binarized data of a line segment with no direction information (1 for the
foreground and 0 for the background, which has been omitted for simplicity).

(c) each pixel is analyzed starting from the pixel of the bottom-most coordinates. The
current pixel is given a different number based on it’s position in relation to the
previous pixel as shown in Figure 3.10.

(d) Once each pixel is labelled with a direction number, the highest occurring direction
number is assigned to all pixels in the line segment, if the segment is greater than 3
pixels in length. If the segment is 3 pixels or shorter in length, all pixels are assigned
with a different number to signify they are to be disregarded.

Figure 3.10: The direction value that will be assigned to a current pixel based on it’s
directional relation to the previous pixel, p

This yields 9 features, namely, the total length of each line direction set (4 features),
the number of lines in each direction set (4 features) and the total number of intersection
points (1 feature). Each feature is normalized to be within the range of 0 and 1000 as
in Equation 3.4 where FV is the feature vector and max is the maximum value. This
range is also used for the Modified Direction, Ratio, Maxima and Energy features. The
uniform range is applied to allow better concatenation of these feature vectors when they
are combined to form the Extended Modified Direction Feature.
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FVnormalized =
FV (i)

max
× 1000 ∀i ∈ FV (3.4)

3.4.3 Modified Direction Feature

The modified direction feature extraction technique [12, 10] results from a combination
of the direction feature [11] and the transition feature. It has been used as part of optical
character recognition systems. A series of steps are required:

1. Preprocessing: The direction feature extraction is performed so as to label each line
segment with a direction.

2. Feature extraction: The image is parsed in four directions, namely, right to left, left
to right, top to bottom and bottom to top. In each direction, the location transition
(LT) and direction transition (DT) features are recorded. LT is the location of the
transition of pixels from background to foreground and DT is the direction of the line
segment at the point of transition. For the sake of uniformity, limits are placed to the
maximum number of transitions, max transitions, recorded in any given direction.
This provided 8 arrays of features with sizes max transitions × (image height or
image width). Figure 3.11 shows an example of processing of the DT and LT in the
left-to-right direction.

3. Resampling: Window resampling is performed. This means that the height and width
values of each array are resampled for normalization, or averaging, so that feature
vectors for all signatures of an individual are uniform in size. Different numbers of
(rs strips) and max transitions sizes are tested. Figure 3.12 shows the vertical
resampling of the image as would have to be performed for (a) LT transition set and
(b) DT transition set of left-to-right transitions. The 15 rows are split into 5 sets
of 3 rows and each of these 3 rows are averaged into 1 row. Vertical resampling,
as show in Figure 6, must be performed for left-to-right and right-to-left transitions
and horizontal resampling must be performed for top-to-bottom and bottom-to-top
transitions.

To formalize the window resampling, letm be the number ofmaximum transitions
and p be the number of pixels in height or width where each pixel now stores the LT or
DT value for the row or column, so that the transitioned image will be IT (p,m). Let s
be the number of pixels in one strip, as calculated in Equation 3.5. Let r be the number
of rs strips and v be the value of an element in a calculated rs strip.

s = p/r (3.5)

Then the resulting set of rs strip values is

v1 = (x11, x
2
1, . . . , x

r
1)

v2 = (x12, x
2
2, . . . , x

r
2)

...
vm = (x1m, x

2
m, . . . , x

r
m)

(3.6)
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Figure 3.11: Processing of the Direction Transition (DT) and Location Transition (LT)
feature values in the Left-to-Right direction [12]

Let vij be a single calculated component where 1 ≤ i ≤ r and 1 ≤ j ≤ m. Then the
value vij is calculated as

vij =
1

s

k<(n×(s+1))−1∑

k=n×s

I(k, j) (3.7)

This provides 8 feature vectors (4 × LT + 4 × DT) with sizes max transitions
x rs strips (of height or width). For simplification, in each case, an equal value for
max transitions and rs strips is used. For example, if a maximum of 5 transitions are
used, along with resampling of 5, the feature vector will have 200 components.

Since all values are in the range [0 : 1], normalization of the feature vector values is

FVnormalized = FV (i)× 1000 ∀i ∈ FV (3.8)

where FV is the feature vector.

3.4.4 Ratio Feature

The Ratio feature is a measure of the ratio between the height and width of the image after
bounding box preprocessing. Nguyen et. al. [48] tried two variations of the equation as
shown in Equations 3.9 and 3.10.

The original equation used by Nguyen et. al. is

Ratio1 =
arctan(width/height)

π/2
(3.9)
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Figure 3.12: Resampling of DT and LT values in the left-to-right direction [12]
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where width and height are the dimensions of the signature image after cropping to
the bounding box, as displayed in Figure 3.13.

Figure 3.13: A signature image cropped to the bounding box size

In later works, a variation of the equation that provides better accuracy when training
the system with supervised learning techniques is used. This variation is defined as

Ratio2 =
min(width, height)

max(width, height)
(3.10)

where min(width, height) and max(width, height) determine the smaller and larger
between the width and height of the image, respectively. This returns a single feature,
which is normalized as in Equation 3.8.

In this work, both variations are tested with distance-based classification techniques.
The results are discussed in Chapter 4.

3.4.5 Maxima Feature

The Maxima feature, proposed by Nguyen et. al. [48], determines the distance between
the two dominant vertical strokes as a fraction of the height and the distance between
the two dominant horizontal strokes as a fraction of the width. The vertical maxima is
defined as

Maximavertical =

( |row1
max − row2

max|
height

)
(3.11)

and the horizontal maxima is defined as

Maximahorizontal =

( |col1max − col2max|
width

)
(3.12)

where row1
max and row2

max are the positions of the longest (or most dominant) and
second longest horizontal segments and col1max and col2max and the positions of the longest
and second longest vertical segments, respectively.

Two preprocessing variations of the Maxima feature are tested in this work.

31



1. In the first variation (MaximaT ), binarization, bounding box cropping and Zhang-
Suen thinning [74] are performed. The segments were then identified by finding the
longest perfectly straight lines of pixels in the horizontal and vertical directions.

2. In the second variation (MaximaS), the Direction Feature is applied after the prepro-
cessing steps mentioned directly above. The longest segments were then chosen from
the average direction segments determined by the Direction Feature processing.

Figure 3.14 shows the identification of the two dominant horizontal segments (in
blue) and two dominant vertical segments (in green) after the direction feature is applied.
This returns 2 features, which are normalized as in Equation 3.8.

Figure 3.14: A depiction of the Maxima Feature extraction process after Direction Fea-
ture preprocessing. The distances between the longest vertical and horizontal segments
is shown.

3.4.6 Energy Feature

The Energy feature, proposed by Nguyen et. al. [48], is a global measurement of the
amount of energy used by an individual to write a signature. Binarization, bounding
box cropping and thinning are required for preprocessing. After the preprocessing, the
energy features are extracted as described in Algorithm 2. This returns 5 features, which
are normalized as in Equation 3.8.

3.4.7 Extended Modified Direction Feature

The Extended Modified Direction Feature (EMDF) is a concatenation of the DF, MDF,
Ratio, Maxima and Energy features as proposed by Nguyen et. al. [48]. It was found
to improve the accuracy of classification since it is a combination of “local features” and
“global features”. Local features refer to feature extraction techniques that treat patterns
holistically and provide in-depth information of an image by analyzing individual parts
of a pattern. The local features, in this work, are obtained from the MDF. Conversely,
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Algorithm 2 Energy Feature extraction of an image, I
Require: I , . Source Image
Require: fgd, . The colour of foreground pixels
Require: sumV , . Sum of vertical neighbouring pixels
Require: sumH , . Sum of horizontal neighbouring pixels
Require: sumD45, . Sum of 45◦ diagonal neighbouring pixels
Require: sumD135, . Sum of 135◦ diagonal neighbouring pixels
Require: height, . Height of I
Require: width, . Width of I
Ensure: energyV , . Vertical energy
Ensure: energyH , . Horizontal energy
Ensure: energyRatioH , . Ratio of horizontal to vertical energy
Ensure: energyRatioD, . Ratio of 45◦ diagonal to 135◦ diagonal energy
Ensure: energyRatioG, . Global ratio energy

1: for each pixel(x,y) do
2: if pixel(x,y+1)=fgd then
3: sumV ++
4: end if
5: if pixel(x,y-1)=fgd then
6: sumV ++
7: end if
8: if pixel(x+1,y)=fgd then
9: sumH++

10: end if
11: if pixel(x-1,y)=fgd then
12: sumH++
13: end if
14: if pixel(x+1,y+1)=fgd then
15: sumH++; sumV ++; sumD135++;
16: end if
17: if pixel(x-1,y-1)=fgd then
18: sumH++; sumV ++; sumD135++;
19: end if
20: if pixel(x+1,y-1)=fgd then
21: sumH++; sumV ++; sumD45++;
22: end if
23: if pixel(x-1,y+1)=fgd then
24: sumH++; sumV ++; sumD45++;
25: end if
26: end for
27: energyV = height/sumV

28: energyH = width/sumH

29: energyRatioH = min(sumV ,sumH)
max(sumV ,sumH)

30: energyRatioD = min(sumD45,sumD135)
max(sumD45,sumD135)

31: energyRatioG = min(energyRatioH ,energyRatioD)
max(energyRatioH ,energyRatioD)
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global features refer to feature extraction techniques that extract information from an
overview of the image. This makes them less affected by noise and variations in the
image, but means that they extract less information. The local features, in this work, are
obtained from the Energy, Direction, Ratio and Maxima features. All the features are
normalized into the range of [0:1000], as described previously, and then concatenated to
create the Extended Modified Direction Feature.

3.4.8 Local Direction Pattern (LDP)

The Local Direction Pattern (LDP) was proposed by Jabid et. al. [28] for use in face
recognition. It was later used for signature verification by Ferrer et. al. [21]. This
technique utilizes the 8 orientations of Kirsch masks, as shown in Figure 3.15, to detect
the presence of edges or corners and their orientations.

For preprocessing, the image is first binarized, then dilated and cropped to the bound-
ing box area. For each pixel in the source image, Isrc(x, y), the LDP code values are
calculated to transform it into a new image, ILDP (x, y), as shown in Figure 3.16. This is
done by performing a convolution of Kirsch masks with the image at each pixel, so as to
obtain the values of the 8 mask orientations, m0, m1, . . . , m7. The absolute mask values
are then ranked in descending order and then binarized to create the code bits. For the
mask value binarization, the three highest ranking mask values are set to 1 and the rest
are set to 0. In other words, given the source image Isrc, we will compute ILDP , which
is a transformed image using Algorithm 3.

Figure 3.15: The 8 orientations of Kirsch Masks [21]. Each orientation is applied to a
pixel and its 8 neighbours to calculate 8 mask values.

Following this, a histogram, HLDP , is created from ILDP (x, y). However, since each
8-bit pixel has exactly three bits with the value 1, and 5 bits with the value 0, this allows
for only 56 possibly permutations out of the standard 256 permutations that are possible
from 8 bits. Therefore, the histogram will only account for these 56 possible values.
Figure 3.17 shows a sample LDP histogram.

Further, it is possible to divide the image ILDP (x, y) into blocks, also called grids or
zones, by splitting it into a specified number of parts vertically (splitV ) and horizontally
(splitH) and have a 56-value histogram for each block. The final feature vector, FVLDP ,
is then obtained by concatenating all of these histograms, FV = H1

LDP + H2
LDP +

... + HsplitV ×splitH
LDP . Figure 3.18 shows a sample of an image with 4 vertical splits and 3

horizontal splits. This is also regarded as a form of resampling, which may increase or
decrease the feature vector size and the depth of information.
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Figure 3.16: calculation of the LDP code [21] obtained by applying each of the 8 Kirsch
masks

Algorithm 3 Local Directional Pattern, ILDP , calculation of an image, Isrc
Require: Isrc, . Source Image
Ensure: ILDP , . Image Transformed

using Local Direc-
tional Pattern

1: for each pixel (x,y) do
2: for i=0 do 7
3: for k= - 1 do 1
4: for l = -1 do 1
5: mi = mi +Mi(k + 1, l + 1)× Isrc(x+ k, y + l)

6: end for
7: end for
8: Transform the three highest val-

ues mi into 1s and the rest into
0s

9: end for
10: powerof2 = 1
11: ILDP (x, y) = 0
12: for i = 0 do 7
13: ILDP (x, y) = ILDP (x, y) +mi × powerof2
14: powerof2 = 2× powerof2
15: end for
16: end for

3.4.9 Feature Vectors and Individually Optimized Resampling

Resampling increases, or decreases, the amount of information extracted from an image,
through resizing of the feature vector. This is a form of spatial normalization. Different
resampling sizes results in difference accuracies due to changes in the amount of ex-
tracted information. It is expected that choosing the best resampling size per user will
optimize the overall accuracy of the system. When a feature vector is resampled, its size
is normalized to produce a uniform feature vector size, either globally for all signature
sets or locally per individual set. Vivaracho-Pascual et. al. [68] tries several resampling
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Figure 3.17: A sample LDP histogram showing the occurrences of each directional per-
mutation from the image in Figure 3.7 with no splits

Figure 3.18: A dilated image with splits segmented by 3 horizontal splits and 4 vertical
splits

36



sizes for their feature vectors, in research with online signatures. They note that there is
no single resampling size that is optimal for all signatures. They further state that local
optimization, also called individually optimized resampling, obtained by choosing the
best feature vector size per individual, is a non-trivial approach and interesting for future
study. However, for their work, they chose a global resampling size for all individuals.
In this work, multiple feature vector sizes are analyzed so as to understand the effect of
resampling. Resampling was performed on the MDF and on the LDP.

Since the resampling technique is usually tied closely to the feature extraction tech-
nique used, different resampling approaches were applied for each of the Modified Direc-
tion Feature (MDF) and Local Directional Pattern (LDP) feature extraction techniques.
Below are brief outlines of the resampling that is performed.

The resampling technique used for the MDF is described in Sections 3.4.3. Different
rs strips and max transitions sizes are used to change the size of the feature vector.
The smallest possible is a size of 2. Tests with incrementally large sizes are used, until
size 8. By this point, the resampling has little positive impact on the accuracy and the
last feature vector size was negatively affecting processing time. It was decided to keep
the maximum size of 8. In the previous studies of the MDF techniques [10, 12, 48]
a rs strip size of 5 was used, only. Blumstein et. al. [12] tests 2 different sizes of
max transitions, namely, 3 and 4. It was found that, when using a neural network with
a radial basis function for classification, 3 transitions work better than 4 transitions in
one case only. They therefore use 4 transitions only for the rest of their work. Feature
vector sizes for MDF and EMDF respectively are calculated as

FVMDF = 8×max transitions× rs strips (3.13)

and

FVEMDF = 8×max transitions×rs strips+FVDF +FVEnergy+FVRatio+FVMaxima

(3.14)

where

FVDF + FVEnergy + FVRatio + FVMaxima = 9 + 5 + 1 + 2 (3.15)

The resampling technique used for LDP is described in Sections 3.4.8. In the works
of Ferrer et. al. [21], the signatures are split into 4 blocks vertically and 3 blocks hor-
izontally, giving a total of 12 blocks. In this work, images are tested with block splits
between 1 and 8 in both the vertical, splitV , and horizontal, splitH , directions. This
provides between 1 and 64 blocks per image. Since each histogram has a size of 56
and histograms are concatenated, the feature vector size for LDP feature extraction is
calculated as

FVLDP = 56× splitV × splitH (3.16)

The tested feature vector sizes for the MDF and EMDF are shown in Table 3.1 and
the feature vector sizes for LDP are show in Table 3.2.
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Table 3.1: MDF feature vector sizes - The feature vector sizes with each different com-
bination of rs strips and max transitions

rs strips max transitions MDF FV size EMDF FV size
2 2 32 49
3 3 72 89
4 4 128 145
5 5 200 217
6 6 288 305
7 7 392 409
8 8 512 529

Table 3.2: LDP feature vector sizes - The feature vector sizes with each different com-
bination of splitH and splitV

HHHHHHH
V 1 2 3 4 5 6 7 8

1 56 112 168 224 280 336 392 448
2 112 224 336 448 560 672 784 896
3 168 336 504 672 840 1008 1176 1344
4 224 448 672 896 1120 1344 1568 1792
5 280 560 840 1120 1400 1680 1960 2240
6 336 672 1008 1344 1680 2016 2352 2688
7 392 784 1176 1568 1960 2352 2744 3136
8 448 896 1344 1792 2240 2688 3136 3584

3.5 Classification

3.5.1 Determining the Threshold

Authentic signatures are expected to have distance values below a certain threshold while
forged signatures would have values above that threshold. This threshold is determined
by finding the optimal Equal Error Rate (EER) during the training phase. Authentic
signatures with distances above the threshold are regarded as false negatives and con-
tribute to the False Rejection Rate (FRR) while forged signatures with distances below
the threshold are regarded as false positives and contribute to the False Acceptance Rate
(FAR). This is further split into the FAR for skilled forgeries (FARS) and for random
forgeries (FARR). The threshold is chosen where the distance for the FRR and FARS are
equal.

3.5.2 Euclidean Distance

One of the most common distance-based classification techniques for determining the
accuracy of biometric systems is the calculation of the Euclidean distance between a
reference vector (derived as a mean of several authentic signatures of an individual) and
other feature vectors.
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The equation for determining the Euclidean distance between vectors x = (xi)i=1,2,...,m

and y = (yi)i=1,2,...,m is defined as

||x− y||p = (
m∑

i=1

|(xi − yi)|p)1/p (3.17)

where p = 2. This makes the equation

||x− y||2 = (
m∑

i=1

|(xi − yi)|2)1/2 (3.18)

3.5.3 Manhattan Distance

The Manhattan distance, also called the City-block distance, is the distance between two
points determined as the sum of the absolute difference of their respective coordinates.
The equation for determining the Manhattan distance between vectors x = (xi)i=1,2,...,m

and y = (yi)i=1,2,...,m is computed as defined in Equation (3.17) where p = 1. Therefore,
Equation (3.17) can be re-written as

||x− y||1 =
m∑

i=1

|(xi − yi)| (3.19)

3.5.4 Fractional Distance

A drawback of using Euclidean and other p-norm distances where p ∈ N1 is that as the
vectors get larger, the distance values tend to cluster. This is called the concentration
phenomenon. To overcome this limitation of distance-based classification, Vivaracho-
Pascual et. al. [68] introduced the use of fractional p-norm distances in their work on
online signature verification.

The equation for determining fractional p-norm distance between vectors x and y is
computed as

min(||x− y||p) = (Σ|(x− y)|p)1/p (3.20)

where 0.1 ≤ p ≤ 2.0.

The optimal value of p is when the distance calculated using Equation (3.20) is at its
minimum for all values of p within the given range.

3.5.5 Ratio Distance

The equation for determining the Ratio distance between vectors x = (xi)i=1,2,...,m and
y = (yi)i=1,2,...,m is computed as defined in equation (3.21).
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||x− y|| = (
m∑

i=1

min(|xi|, |yi|)
max(|xi|, |yi|)) (3.21)

where min and max determine the minimum and maximum values between the two
input parameters, respectively.

3.5.6 Mahalanobis Distance

The Mahalanobis distance was first documented in 1936 by Prasanta Mahalanobis [42].
This description of the distance is based on the algorithm and equations of Kardi Teknomo
[64].

Given the set of feature vectors X , with a the number of components of each vector,
and b its cardinality. X is represented as a matrix

X =




x11 x12 . . . x1b
x21 x22 . . . x2b
...

... . . . ...
xa1 xa2 . . . xab




and Y another set of feature vectors, with a the number of components of each vec-
tor, and d its cardinality. Y is represented as a matrix

Y =




y11 y12 . . . y1d
y21 y22 . . . y2d
...

... . . . ...
ya1 ya2 . . . yad




The ith vector in X is xi = (x1i , x
2
i , . . . , x

a
i )

and ith vector in Y is yi = (y1i , y
2
i , . . . , y

a
i )

The Mahalanobis distance is computed as follows.

The mean values, xi and yi, for ith components in subsets X and Y respectively, are
defined in Equations Equations 3.22 and 3.23, respectively.

xi =

(
1

b

b∑

j=1

xij

)
, i = 1, 2, . . . , a (3.22)

and

yi =

(
1

d

d∑

j=1

yij

)
, i = 1, 2, . . . , a (3.23)
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We then obtain MD = (MD1,MD2, . . . ,MDa), where the mean difference, MDi,
is determined using xi and yi.

MDi =
(
xi − yi

)
, i = 1, 2, . . . , a (3.24)

The centered data matrices, X̃ and Ỹ , are determined by centering the data on the
mean

x̃ji = (xji − xj), i = 1, 2, . . . , a; j = 1, 2, . . . , b (3.25)

ỹji = (yji − yj), i = 1, 2, . . . , a; j = 1, 2, . . . , d (3.26)

The covariance matrices, COV(X) and COV(Y), are calculated using the centred data
matrices.

COV (X) =
1

b
X̃T × X̃ (3.27)

COV (Y ) =
1

d
Ỹ T × Ỹ (3.28)

The, a× a, pooled covariance matrix, PCM(X, Y ), is determined using a weighted
average of covariance matrices COV (X) and COV (Y ) of X and Y , as follows

PCM(X, Y ) =
b

b+ d
COV (X) +

d

b+ d
COV (Y ) (3.29)

The final Mahalanobis distance, M , is then determined by using the mean difference
and the pooled covariance matrix.

M =
√
MDT × PCM(X, Y )−1 ×MD (3.30)

3.5.7 Cosine Similarity Measure

The Cosine Similarity Measure is another distance-based technique which determines
the similarity between two vectors, x = (xi)i=1,2,...,m and y = (yi)i=1,2,...,m, as defined in
Equation 3.31.

||x− y|| =
( ∑m

i=1 x
iyi√∑m

i=1(x
i)2 ×

√∑m
i=1(y

i)2

)
(3.31)
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3.5.8 Canberra Distance

The equation for determining the Canberra distance between vectors x = (xi)i=1,2,...,m

and y = (yi)i=1,2,...,m is computed as defined in equation (3.32).

||x− y|| = (
m∑

i=1

|(xi − yi)|
|xi|+ |yi| ) (3.32)

3.5.9 Weighted Euclidean Distance

The weighted Euclidean distance measure is a technique used in iris verification by Zhu
et al. [75] to improve the classification accuracy by adding weight, or statistical impor-
tance, to the most reliable features from the feature vector. Firstly, the standard deviation
for the reference signatures is obtained.

Let the n reference signatures, containing m features, be

x1 = (x11, x
2
1, . . . , x

m
1 )

x2 = (x12, x
2
2, . . . , x

m
2 )

...
xn = (x1n, x

2
n, . . . , x

m
n )

(3.33)

Let xji be the jth component of the ith reference signature where 1 ≤ i ≤ n and
1 ≤ j ≤ m.

Then the mean of the jth component the reference signatures, µj , is computed as

µj =
1

n

n∑

i=1

xji (3.34)

and their standard deviation σj is defined as

σj =

√√√√ 1

n

n∑

i=1

(xji − µj)2 (3.35)

The weighted Euclidean distance between 2 reference signatures xk and xl, for 1 ≤
k, l ≤ n is

||x− y||p =

(
n∑

j=1

|xjk − xjl |p
σj

)1/p

(3.36)

where p = 2.

The equation can be rewritten as

||x− y||2 =

(
n∑

j=1

|xjk − xjl |2
σj

)1/2

(3.37)
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3.5.10 Weighted Manhattan Distance

The Manhattan distance and weighted Euclidean distance can be combined to form the
novel weighted Manhattan distance

||x− y||1 =
m∑

j=1

|xj − yj|
σj

(3.38)

where x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym)

3.5.11 Weighted Fractional Distance

The fractional distances and weighted Euclidean distance can then be combined to form
the novel weighted fractional distance

min(||x− y||p) =

(
m∑

j=1

|xj − yj|p
σj

)1/p

(3.39)

where x = (x1, x2, . . . , xm) , y = (y1, y2, . . . , ym), and 0.1 ≤ p ≤ 2.0

As with Equation 3.20, the optimal value of p is when the distance calculated using
Equation 3.39 is at its minimum for all values of p within the given range.

3.6 Experimental Methodology

All of the classification techniques described in Section 3.5 were tested with the DF,
Energy, Ratio, Maxima, MDF and EMDF features, using thresholding as described in
Section 3.5.1 and individually optimized resampling as described in Section 3.4.9. The
results for each of the classification techniques were compared and the most successful
classification techniques were then tested with the LDP feature extraction to verify the
effectiveness of the classification techniques.

The GPDS300 signature database [66] was used in this work. It contains signatures
from 300 individuals, with 24 authentic and 30 forgeries per individual. This gives a total
of 16200 signatures for training and testing. For each individual 10 authentic signatures
were used to create the reference signature, while the other 14 authentic signatures and
30 skilled forgeries were used for training and testing. Additionally, for each individual,
authentic signatures from each of the other 299 individuals were used as random forgeries
for testing.

3.7 Conclusion

An overview of the signature verification system was described. After this, each of the
three main components of this system were discussed in further detail, namely, pre-
processing, feature extraction and classification. Different preprocessing techniques are
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used for each feature extraction technique. The local feature extraction techniques used,
are the MDF and LDP. The global techniques used, are the DF, Energy, Ratio and Max-
ima features. The global techniques are combined with the MDF, to form the EMDF.
The combination of local and global features aids in reduction of noise in a feature vec-
tor, Individually Optimized Resampling, which chooses the optimal feature vector size
per individual, is also used. Various classification techniques are described. Each will
be used to classify the extracted feature vectors and the accuracy of each classification
technique will be compared. In the next section, results of the classification tests are
discussed. These tests involved analyzing the accuracy of the various distance-based
classification techniques with the feature extraction techniques.
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Chapter 4

Results and Discussions

4.1 Introduction

This chapter presents the results achieved, as well as a critical analysis of these results.
The data set and the thresholding used in the analysis are discussed. Then the results of
tests with the Extended Modified Direction Feature (EMDF) with various distance-based
classification techniques are covered. Further tests with the most successful distance-
based classification techniques are applied to the Local Directional Pattern (LDP) feature
vectors and their results are discussed. A comparison with results from literature is then
performed.

4.2 Data Set

For the analysis of the techniques, signatures from the Grupo de Procesado Digital de
Senales (GPDS) signature database were used [66]. It is among the largest and most com-
monly used publicly available offline signature database. The database consists of black
and white signatures of multiple individuals, with 24 authentic copies and 30 skilled
forgeries for each individual. A set of 300 individuals (GPDS300) was obtained from
this database and used for the experiments. This gives a total of 16200 signatures in the
database used, of which 7200 are authentic and 9000 are skilled forgeries.

Each signature’s file had a naming format of c-xxx-yy.bmp where xxx is the number
of the signer in the range 001-300 for GPDS300, and the yy is the repetition number of
the signature in the range 01-24.

10 authentic signatures are used to create the reference signature, the other 14 authen-
tic signatures and the 30 skilled forgeries are used for the classification and verification.
For random forgeries per individual , a single authentic signature from each of the other
299 individuals is used.

4.3 Threshold Calculation

There are two possible types of thresholds, a global threshold and a localized threshold.
With a global threshold, a single threshold is used for analysis and decision making
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with all signatures. With a localized threshold, a different threshold is used for analysis
and decision making with each individual’s set of signatures. Schafer and Viriri [58]
reports that a locally applied threshold performs better than a globally applied threshold.
Therefore, localized thresholding is used in this work.

Quantification of result accuracy is measured in terms of the False Rejection Rate
(FRR); False Acceptance Rate (FAR) which is further broken down into FAR for skilled
forgeries (FARS) and FAR for random forgeries (FARR); and the Equal Error Rate
(ERR). The FRR is a measure of false negatives, which is the percentage of authentic
signatures that are classified forgeries. Conversely, the FAR is a measure of false posi-
tives, which is the percentage of forged signatures that are classified as authentic. The
EER is the point at which the FRR and FARS converge. Figure 4.3 shows an example of
the ROC curve for obtaining the EER.

Figure 4.1: A ROC-curve showing the point of intersection between the FRR and FARS
curves (obtained from classification of the EMDF using the weighted fractional distance
and individually optimized resampling)

4.4 Tests with Extended Modified Direction Feature

Various distance-based classification techniques are tested with each of the global and
local feature extractions separately. The global features are the Direction feature, Energy
feature, and two variations each of the Maxima and Ratio features. The variations of the
Maxima feature are MaximaT , where preprocessing involved thinning; and MaximaT ,
where preprocessing involves both thinning and segmentation. The variations of the
Ratio feature are Ratio1, as defined in Equation 3.9; and Ratio2, as defined in Equation
3.10. The global features are the Modified direction feature with different feature vector
sizes for differing levels of information extraction. Further, the most successful distance-
based measures are then applied to the Extended MDF (EMDF), which is a concatenation
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of the best global features and different feature vector sizes for the local features of the
MDF. The feature vector sizes are varied through changing the resampling strip size and
maximum transitions equally during the MDF feature extraction phase. In Tables 4.1 to
4.5, the variations in resampling are symbolizes with “rsx”, where x is the resampling
size used.

4.4.1 Euclidean Distance

Table 4.1 shows the results of Euclidean distance tests performed with various feature
extraction techniques. The global feature extractions, when tested with the Euclidean
distance, perform poorly in individual setting, with the best being the combination of
energy and Ratio1 features that provide an EER of 28.6% and FARR of 2.00%. While
the DF provides a low EER of 6.61%, the FARR is worse than the ERR at 11.0%. The
MDF feature extractions perform better with the best EER of 22.5% and corresponding
lowest FARR of 1.10% occurring with a resampling of 7. While the EER improves for
each increasing resampling size, this trend is broken by the MDF rs8 feature extraction.
This is due to the concentration phenomenon [23], [68]. This phenomenon refers to
the concentration of distances in p-norm space, also called LP -space, as feature vectors
become larger. It is generally most apparent will larger p-norms, such as the Euclidean
distance, where the p-norm value is 2. The concentration of distances results in less
accurate classification.

The EMDF performs much better as a whole in comparison to its constituent parts,
which are the MDF and the global features. This is most pronounced in the 7.6% differ-
ence between the MDF and EMDF with a resampling strip size of 2 for both. Both the
EER and FARR show improvement, confirming the report of Nguyen et. al. [48] that a
combination of global and local feature extraction techniques enhances the classification.
The best EER of 19.2% was obtained with EMDF with resampling of 3. The larger fea-
ture vectors perform worse, while some of the largest feature vectors perform worse than
the smallest feature vector in terms of the EER. The poor performance of larger feature
vectors can be attributed to the clustering of distances as described by the concentration
phenomenon. This phenomenon is usually very apparent when the Euclidean distance is
applied to large data sets.

4.4.2 Manhattan Distance

Table 4.1 shows the results of Manhattan distance tests performed with various feature
extraction techniques. The global feature extractions, when tested with the Manhattan
distance, perform poorly in individual setting, with the best being the combination of
energy and Ratio1 features that provide an EER of 27.1% and FARR of 1.50%. While
the DF provides a low EER of 9.0%, the FARR is poor at 5.85%. The MDF feature ex-
tractions perform better with the best EER of 22.2% and corresponding FARR of 1.10%
occurring with a resampling of 8. The EER improves for each increasing feature vector
size. This suggests that the Manhattan distance is not affected by the concentration phe-
nomenon as much as the Euclidean distance. While there is very little difference for the
EER between the Euclidean and Manhattan distances for the MDF, the improvement of
using the Manhattan distance is more pronounced when using the LDP feature extraction,
discussed further down in this chapter.
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Table 4.1: The Euclidean and Manhattan distances investigated with individual global
feature extraction techniques, the local MDF and concatenated EMDF

Feature Vectors Euclidean Distance Manhattan Distance
EER% FARR% EER% FARR%

Direction Feature 6.61 11.0 9.0 5.85
Energy 29.7 8.29 27.8 0.00
Energy + MaximaS 36.9 11.5 32.9 7.06
Energy + MaximaT 34.1 9.74 30.6 6.21
Energy + Ratio1 28.6 2.00 27.1 1.50
Energy + Ratio2 29.6 5.85 27.9 4.53
MDF rs2 27.7 1.91 27.8 1.74
MDF rs3 25.5 1.39 25.4 1.25
MDF rs4 24.4 1.12 24.0 1.09
MDF rs5 23.3 1.26 23.1 1.02
MDF rs6 22.7 1.16 22.4 1.00
MDF rs7 22.5 1.10 22.3 1.06
MDF rs8 22.5 1.26 22.2 1.10
EMDF rs2 20.1 0.73 18.7 0.48
EMDF rs3 19.2 0.44 19.7 0.39
EMDF rs4 19.4 0.37 20.2 0.36
EMDF rs5 19.7 0.36 20.6 0.44
EMDF rs6 20.2 0.36 20.3 0.43
EMDF rs7 20.2 0.44 20.5 0.60
EMDF rs8 20.4 0.49 20.8 0.62

The EMDF performs much better as a whole in comparison to its constituent parts.
The best EER in this group was 18.7% for the EMDF with a resampling of 2, with
a corresponding FARR of 0.48%. This is better than the best EMDF with Euclidean
distance by 0.5%, and is better than the best MDF with Manhattan distance by 3.5%.
The FARR also improves through the concatenation of the global and local features.

The improvement trend is reversed for the EMDF, where the smallest feature vectors
provide the best EER, while the largest MDF feature vectors provide the best EER in that
group. This is due to combining the local and global features together, since the global
features and smaller p-norm are both used to reduce the effect of non-Gaussian ran-
domness within the feature vector. The global features have more impact in the smaller
feature vectors. As the feature vectors become larger and their are a much greater number
of data points, the impact of the small set of global features become insignificant.

4.4.3 Mahalanobis Distance

Table 4.2 shows the results of Mahalanobis distance tests performed with various feature
extraction techniques. The Mahalanobis distance did not perform well, with the best
EER of 37.2% and a corresponding FARR of 20.05%. In comparison with results in
literature, where most EER results with skilled forgeries are below 20%, the Mahalanobis
distance EER is too high. This high EER makes it a non-viable classification technique
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candidate for the offline feature extraction techniques. It’s poor performance is due to
an asymmetric distribution of data in the feature vectors. The Mahalanobis distance
performs best with multivariate normal data distributions [30].

Table 4.2: The Mahalanobis distance investigated with individual global feature extrac-
tion techniques, the local MDF and concatenated EMDF

Feature Vectors Mahalanobis Distance
EER% FARR%

MDF rs2 41.7 23.39
MDF rs3 39.9 22.30
MDF rs4 38.9 21.56
MDF rs5 37.9 21.09
MDF rs6 37.4 20.66
MDF rs7 37.2 20.36
MDF rs8 37.2 20.05

4.4.4 Cosine Similarity Measure

Table 4.3 shows the results of the cosine similarity measure tests performed with various
feature extraction techniques. The cosine similarity measure performed the worst from
all of the distance-based classification techniques that were measured. The best EER
for the global features was 56.7% for the combination of Energy and thinned Maxima
feature extractions and the best for the local feature extractions was 61.6% when using
resampling strip size of 2 with the MDF. This indicates that forgeries are accepted are
authentic and authentic signatures are regarded as forgeries in over 60% of cases, in a
best case scenario. The FARR performs even worse that the EER in all cases, where
random forgeries are regarded as authentic in between 67% and 93% of case, depending
on the feature extractions used. According to Liu et. al. [40], the cosine similarity
measure works best for orthogonal data sets where each data point is independent of
each other. Conversely, there is a high level of inter-dependence between features of a
biometric feature vector and the feature vectors are not orthogonal.

4.4.5 Canberra Distance

Table 4.3 shows the results of the Canberra distance tests performed with various feature
extraction techniques. The Canberra distance performed slightly better than the Maha-
lanobis distance in terms of the EER, and much better in terms of FARR. For the global
feature extractions, the best EER was 25.5%, for a combination of Energy and Ratio1

feature vectors, with a corresponding FARR of 1.03%. For the local feature vectors, the
best was MDF with an resampling strip size of 6. This provides an EER of 26.1% and an
FARR of 9.38%. The FARR is relatively low for small feature vectors but becomes very
high as feature vectors become larger in size. This classification technique would not
be good for LDP feature extraction technique, whose feature vectors are much larger in
size. Additionally, even the low FARR values are high in comparison with the distances
in Lp space, namely, the Euclidean, Manhattan and fractional distances.
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Table 4.3: The cosine similarity measure, Canberra distance and Ratio distance investi-
gated with individual global feature extraction techniques, the local MDF and concate-
nated EMDF

Feature Vectors Cosine Similarity Canberra Distance Ratio Distance
EER% FARR% EER% FARR% EER% FARR%

Direction Feature 63.5 92.96 30.4 3.27 13.1 9.62
Energy 56.7 70.76 26.2 0.00 26.2 0.26
Energy+ MaximaS 58.0 66.95 39.3 8.45 36.2 6.13
Energy+ MaximaT 56.7 79.99 39.9 12.55 36.2 8.05
Energy+ Ratio1 63.0 65.02 25.5 1.03 25.6 1.09
Energy+ Ratio2 59.5 67.67 26.1 3.43 26.0 3.40
MDF rs2 61.6 87.26 29.8 2.29 29.7 2.35
MDF rs3 68.1 79.89 30.2 2.73 31.5 2.91
MDF rs4 69.9 78.53 27.9 3.12 32.8 3.16
MDF rs5 70.8 75.84 26.9 5.64 31.6 2.70
MDF rs6 71.5 73.37 26.1 9.38 31.2 2.35
MDF rs7 72.1 73.15 26.1 13.56 31.2 2.20
MDF rs8 72.5 73.34 26.2 17.69 30.6 1.83

4.4.6 Ratio Distance

Table 4.3 shows the results of the ratio distance tests performed with various feature
extraction techniques. While the Ratio distance performs better than the Mahalanobis
distance and cosine similarity measure, it also performs worse than the Canberra, Eu-
clidean and Manhattan distances. Among the global feature extractions, only the DF
performs well, with an EER of 13.1%. However, the corresponding FARR is very high
at 9.62%, in comparison with other classification techniques applied to feature extraction
techniques in this work. The best MDF, with an EER of 29.7%, is with a resampling of
2. This EER and its corresponding FARR of 2.35% are still too high. The high EER and
FARR make it an inappropriate candidate for offline signature classification.

4.4.7 Fractional Distance

Table 4.4 shows the results of the fractional distance tests performed with various feature
extraction techniques. Both the local MDF and global feature extractions, when tested
with the fractional distance, performed better than all of the classification tests before it.
This is due to locally optimizing the classification by choosing the best p-norm value per
individual. Further, the fractional distances help to overcome the effect of the concentra-
tion phenomenon.

The best EER for the global features was 23.9% for both the energy feature and the
concatenation of the energy and ratio1 features. These provided a better EER than the
Euclidean distance by 5.8% and 4.7% respectively. While the DF achieved an EER of
5.7%, the FARR was higher, at 10.78%. This is unacceptably high. The best EER for the
local MDF features was 19.0%, which was acheived with the largest resampling size of
8.
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The EMDF performs much better as a whole in comparison to its constituent parts.
This is most pronounced in the 9.0% difference between the MDF and EMDF with re-
sampling of 2 for both. Both the EER and FARR show improvement, confirming the
report of Nguyen et. al. [48] that a combination of global and local feature extraction
techniques enhances the classification. The best EER of 16.0% was obtained with EMDF
with resampling of 2. The improvement trend is reversed for the EMDF, where the small-
est feature vectors provide the best EER, while the largest MDF feature vectors provide
the best EER in that group. This is attributed to an effect of combining the local and
global features together, where the global features have more impact in the smaller fea-
ture vectors. As the feature vectors become larger, the impact of the small set of global
features become insignificant. Additionally, the feature vectors are too small to utilize
the full effect of the fractional distances in overcoming the concentration phenomenon.

Table 4.4: The fractional distance investigated with individual global feature extraction
techniques, the local MDF and concatenated EMDF

Feature Vectors Fractional Distance
EER% FARR%

Direction Feature 5.7 10.78
Energy 23.9 5.41
Energy + MaximaS 26.2 6.00
Energy + MaximaT 24.9 5.62
Energy + Ratio1 23.9 2.90
Energy + Ratio2 24.4 3.10
MDF rs2 25.0 1.96
MDF rs3 22.6 1.32
MDF rs4 21.5 1.07
MDF rs5 20.2 1.11
MDF rs6 19.6 0.98
MDF rs7 19.2 1.04
MDF rs8 19.0 1.16
EMDF rs2 16.0 0.60
EMDF rs3 16.5 0.45
EMDF rs4 17.1 0.42
EMDF rs5 17.3 0.38
EMDF rs6 17.4 0.40
EMDF rs7 17.5 0.52
EMDF rs8 17.6 0.68

4.4.8 Weighted Euclidean Distance

Table 4.5 shows the results of the weighted Euclidean distance tests performed with
various feature extraction techniques. The weighted Euclidean distance is better than the
Euclidean and Manhattan distances in all cases, and better than fractional distances in all
the individual tests and some of the EMDF tests.

The best EER for the global features was 21.1% for the concatenation of the energy
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Table 4.5: The weighted Euclidean, weighted Manhattan and weighted fractional dis-
tances investigated with individual global feature extraction techniques, the local MDF
and concatenated EMDF

Feature Vectors Weighted
Euclidean

Weighted
Manhattan

Weighted
Fractional

EER% FARR% EER% FARR% EER% FARR%
Direction Feature 4.0 19.50 7.0 7.62 3.9 7.89
Energy 21.9 1.69 23.0 1.81 20.6 2.24
Energy+ MaximaS 21.8 1.60 23.1 1.82 20.4 2.35
Energy+ MaximaT 21.1 1.89 22.3 2.02 19.6 2.45
Energy+ Ratio1 22.0 1.49 23.2 1.63 20.6 1.98
Energy+ Ratio2 22.1 1.46 23.2 1.70 20.6 2.04
MDF rs2 23.1 1.08 24.9 1.26 21.9 1.38
MDF rs3 20.3 0.56 22.0 0.72 19.1 0.81
MDF rs4 19.4 0.69 20.9 0.73 18.0 0.76
MDF rs5 20.0 1.16 20.2 0.97 17.7 0.90
MDF rs6 21.1 2.48 20.2 1.35 17.6 1.22
MDF rs7 21.5 4.11 20.2 2.02 17.5 1.46
MDF rs8 22.2 6.63 20.6 2.97 17.7 1.89
EMDF rs2 15.3 0.24 16.9 0.30 13.8 0.25
EMDF rs3 15.3 0.20 17.3 0.24 14.3 0.24
EMDF rs4 16.1 0.36 17.8 0.29 14.8 0.29
EMDF rs5 18.0 0.71 18.5 0.54 15.7 0.53
EMDF rs6 20.3 1.81 18.8 0.93 16.4 0.98
EMDF rs7 20.8 3.37 19.2 1.47 16.5 1.51
EMDF rs8 22.1 5.68 20.0 2.45 17.1 2.46

and MaximaT features. This provided a better EER than the fractional distance for the
same features by 3.8%. It also performed better than the best global feature vector from
fractional distance classification by 1.8%. This feature vector was the concatenation of
the energy and ratio1 features which had the best EER for all of the previous global
feature vector tests. While the DF achieved an EER of 4.0%, its FARR was higher,
at 19.50%. This is unacceptably high. The best EER for the local MDF features was
19.4%, which was achieved with the resampling size of 4. This is slightly worse than
the best MDF with fractional distance classification, of 19.0%, which was achieved with
a resampling size of 8. It is also better than the best MDF with Euclidean distance
classification by 3.1%.

The EMDF performs much better than any of its constituent parts perform individu-
ally. This is most pronounced in the 7.8% difference between the MDF and EMDF with
resampling of 2 for both. Both the EER and FARR show improvement, confirming the
report of Nguyen et. al. [48] that a combination of global and local feature extraction
techniques enhances the classification. The best EER of 15.3% was obtained with EMDF
with resampling of 3 and corresponding lowest FARR of 0.20%. As observed with the
Euclidean, Manhattan and fractional distances, the improvement trend is reversed for the
EMDF, where the smallest feature vectors provide the best EER, while the largest MDF
feature vectors provide the best EER in that group. This is attributed to the combination
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of the local and global features together.

While the EER shows great improvement, the FARR worsens with the using of the
weighting by standard deviation. This is especially pronounced with the largest MDF
and EMDF feature vectors. The reasoning is that because the weighting can not always
differentiate between different sets of signatures, some features in random forgeries may
be given extra weight if they are similar to authentic signatures. This is particularly
visible with the largest feature vectors which will also may experience the effects of the
concentration phenomenon as well.

4.4.9 Weighted Manhattan Distance

Table 4.5 shows the results of the weighed Manhattan distance tests performed with var-
ious feature extraction techniques. While the Manhattan distance performed better than
the Euclidean distance, the weighted Manhattan distance performs worse than the Eu-
clidean distance in an overall analysis. The weighed Manhattan distance performs better
than the weighted Euclidean distance in the largest feature vectors only. The overall best
weighted Manhattan distances in each group are still worse than those for the weighted
Euclidean distance.

The best global feature vector is the concatenation of the energy and MaximaT fea-
tures with an EER of 22.3% and FARR of 2.02%. The corresponding EER and FARR
for the weighted Euclidean distance is 21.1% and 1.89%. The best MDF EER with the
weighed Manhattan distance is 20.2% whereas the best EER for the weighted Euclidean
distance is 19.4%. The best EMDF EER with the weighed Manhattan distance is 16.9%
whereas the best EER for the weighted Euclidean distance is 15.3%. While the EER for
the weighted Manhattan distances is worse, the FARR improves for the larger feature
vectors in comparison to the weighted Euclidean distance. This relative improvement for
large feature vectors is due to smaller p-norm values experiencing less effect from the
concentration phenomenon. As observed with the Euclidean, Manhattan, fractional and
weighted Euclidean distances, the improvement trend is reversed for the EMDF, where
the smallest feature vectors provide the best EER, while the largest MDF feature vectors
provide the best EER in that group.

4.4.10 Weighted Fractional Distance

Table 4.5 shows the results of the weighted fractional distance tests performed with vari-
ous feature extraction techniques. The weighted fractional distance performs better than
all distance-based classification tests discussed previously.

The best global feature vector is the concatenation of the energy and MaximaT fea-
tures with an EER of 19.6% and FARR of 2.45%. This is better than the corresponding
lowest weighted Euclidean distance for global features by 1.5%, although the FARR for
the weighted fractional distance is higher. The best EER for the local MDF features was
17.5%, which was acheived with the resampling size of 7. This is better than the best
MDF with weighted Euclidean distance classification, of 19.4%, which was achieved
with a resampling size of 4. It is also better than the best MDF with fractional distance
classification by 1.7% and better than the best MDF with Euclidean distance classifica-
tion by 5.0%.
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The EMDF performs much better than either the MDF or the local features individ-
ually, due to the combination of both. This is most pronounced in the 8.1% difference
between the MDF and EMDF with resampling of 2 for both. While the FARR improves
from the smaller feature vectors, it becomes worse for the largest feature vector, although
it is still better than the FARR for the weighted Euclidean distance. This may be an ef-
fect of the weighting function. The best EER of 13.8% was obtained with EMDF with
resampling of 2 and corresponding FARR of 0.25%.

As observed with the Euclidean, Manhattan, fractional, weighted Euclidean and
weighted Manhattan distances, the improvement trend is reversed for the EMDF, where
the smallest feature vectors provide the best EER, while the largest MDF feature vectors
provide the best EER in that group.

4.4.11 Individually Optimized Resampling

Table 4.6 shows the results of individual optimization for different types of classification
with the EMDF.

When dynamic individually optimized resampling was applied to the Euclidean dis-
tance an EER of 15.3% was obtained. This improves the the EER of the Euclidean
distance applied to the EMDF without individually optimized resampling by up to 5.1%
in comparison to the worst Euclidean distance EER, which was for a resampling size of
8. It is also better than the best Euclidean distance, which was far a resampling size of 3,
by 3.9%.

With individually optimized resampling, the Manhattan distance becomes 15.4%.
While this is slightly worse than the optimized EER for the Euclidean distance, it is still
an improvement over the non-optimized Manhattan distance by up to 5.0%, in the case
of the worse Manhattan distance resampling size, and by 3.3% in the case of the best
Manhattan distance, which had a resampling size of 2.

The fractional distances, with individually optimized resampling, obtains an EER
of 12.9%. This is better in comparison to the Euclidean distance with individually op-
timized resampling by 2.4%. It is also better than the best non-optimized fractional
distance by 3.1% and better than the worse by 4.7%.

The weighted Euclidean distance with individually optimized resampling, obtains an
EER of 11.7%. This is better than the EER of the unweighted Euclidean distance with
optimized re-sampling by 3.6% and better than the best weighted Euclidean distance
without resampling optimization by 3.6% as well. It is also better than the worst weighted
Euclidean distance without resampling optimization by 10.4%. It is also better than
individually optimized fractional distance by 1.2%.

With individual optimized resampling, the weighted Manhattan distance performs
better than the unweighted Manhattan distance but worse than the weighted Euclidean
distance and on par with the un weighted fractional distance. It performs better than the
worst weighted Manhattan distance without resampling optimization by 7.1% and better
than the best by 4.0%.

The final analysis for the EMDF was of the weighted fractional distances with indi-
vidually optimized resampling, which combines the weighted Euclidean distance, frac-
tional distance and resampling optimization concepts. It provided the best accuracy from
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all of the individually optimized resampling tests. By combining these weighted frac-
tional distances with individually optimized re-sampling, an EER of 10.8% was obtained.
This is better than all of the previous combinations, including the fractional and weighted
Euclidean distances. It is also better than the best weighted fractional distance without
resampling optimization by 3.0% and better than the worst by 6.3%.

In all cases, the dynamic re-sampling combination provides a much higher accuracy
than any individual static resampling size. Thus, the greatest accuracy was achieved by a
combination of weighted distances, fractional distances and dynamic resampling with an
EER of 10.8%. This is more accurate by almost 10% in comparison to any non-optimized
resampling with a standard Euclidean distance measure.

Table 4.6: Individually optimized resampling investigated with the EMDF
Classification EER% FARR%
Euclidean 15.3 0.54
Manhattan 15.4 0.55
Fractional 12.9 0.57
Weighted Euclidean 11.7 0.71
Weighted Manhattan 12.9 0.69
Weighted Fractional 10.8 0.67

4.5 Tests with Local Directional Pattern

After the success of weighted fractional distances and individually optimized resampling
with the EMDF feature extraction, further tests were performed with a different feature
extraction technique, namely, the Local Directional Pattern. Tables 4.7 to 4.18 show the
results of tests using different numbers of horizontal and vertical splits( splitH and splitV
respectively), with various different classification techniques. The feature vector sizes
are determined by the splitH×splitV ×H whereH is the length of the histogram, which
is always 56 in the LDP extraction technique. Splits between 1 (no split) and 8 were
tested. Further splits were omitted due to the very large vector size’s adverse effect on
processing speed. The same experimental setup was repeated for each of the Euclidean,
Manhattan, fractional, weighted Euclidean, weighted Manhattan and weighted fractional
distances.

4.5.1 Euclidean Distance

Table 4.7 shows the EER results using the Euclidean distance calculations as defined
in Equation 3.18. The EER improved with increasing feature vector sizes at first, since
more data points allow for better classification. The smallest feature vector, from 1 × 1
splits, provided a high EER of 25.0%. This signifies a poor accuracy. As feature vector
size increased, the EER improved to a best of 21.7% at splits 2× 3. However, due to the
concentration phenomenon, which causes distance values to cluster, the EER worsened
for feature vectors larger than this, while some of the largest feature vectors resulted in
worse accuracy than the smallest feature vector. The worst EER of 26.0% was obtained
with the largest feature vector which had splits of 8× 8.
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A similar trend was observed with the FARR, in Table 4.8, obtained using the Eu-
clidean distance calculations, with the best FARR in the same feature vector size vicinity
as the best EER, and the worst FARR correlates with the worst EER. Once again this
is attributed to the concentration phenomenon, which makes the differentiation between
authentic and forged classes difficult with large feature vectors. The distance measures
discussed below are used to counter the effects of the concentration phenomenon.

Table 4.7: The effect of different splitH and splitV on EER(%) using the Euclidean
distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 25.0 23.9 22.6 23.0 22.6 22.8 23.0 23.0
2 23.8 22.3 21.7 22.0 22.0 22.3 22.4 22.6
3 24.0 22.7 21.9 21.9 22.2 22.3 22.6 22.8
4 24.1 23.0 22.5 22.5 22.8 23.0 23.1 23.5
5 24.3 23.7 23.1 23.2 23.5 23.6 23.9 24.3
6 24.8 23.9 23.4 23.7 24.0 24.2 24.5 25.1
7 25.2 24.4 24.2 24.1 24.5 25.0 25.3 25.4
8 26.0 25.2 24.7 25.0 25.2 25.6 25.7 26.0

Table 4.8: The effect of different splitH and splitV on FARR(%) using Euclidean dis-
tances

HHHHHHH
V 1 2 3 4 5 6 7 8

1 1.70 0.96 0.60 0.58 0.55 0.55 0.59 1.35
2 1.09 0.48 0.31 0.34 0.34 0.35 0.41 0.45
3 0.85 0.43 0.28 0.33 0.37 0.38 0.44 0.54
4 0.72 0.43 0.35 0.37 0.42 0.54 0.59 0.72
5 0.81 0.52 0.42 0.53 0.61 0.80 0.88 1.09
6 0.89 0.57 0.52 0.68 0.83 1.02 1.28 1.52
7 0.97 0.77 0.73 0.94 1.20 1.53 1.84 2.26
8 1.02 0.90 0.92 1.19 1.50 1.89 2.24 2.87

4.5.2 Manhattan Distance

Table 4.9 shows the EER results using the Manhattan distance calculations as defined in
Equation 3.19. The best EER of 19.2% was with splits 3×3, which gave a feature vector
slightly larger than the Euclidean distance’s best EER with 2×3 splitting. However, while
the largest feature vectors did not provide the best EER, they still provided a better EER
than the smallest feature vectors. This is in contrast to the Euclidean distance where the
largest feature vectors resulted in a worse EER than the smallest feature vectors. This
shows that p-norm distance measures other than the Euclidean distance can provide a
better result when feature vectors are larger and information is greater.

The FARR, in Table 4.10, showed a similar trend, where the best FARR of 0.18% was
also with splits of 3×3. While the FARR of larger feature vectors increased in relation to
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the best FARR, they were still better than the FARR of the smallest feature vector. This
further advocates the use of p-norm distances other than the Euclidean distance.

Table 4.9: The effect of different splitH and splitV on EER(%) using the Manhattan
distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 23.3 21.6 20.4 20.3 20.2 20.1 20.2 20.2
2 21.7 20.2 19.3 19.7 19.4 19.7 19.8 20.0
3 21.5 20.0 19.2 19.4 19.3 19.4 19.5 19.7
4 21.4 19.9 19.6 19.5 19.8 19.5 19.6 20.1
5 21.6 20.2 19.6 19.8 19.9 20.1 20.1 20.3
6 21.5 20.6 20.0 20.3 20.2 20.4 20.6 20.8
7 21.9 20.6 19.8 20.1 20.5 20.5 20.8 21.0
8 22.0 21.0 20.2 20.5 20.7 20.9 20.9 21.2

Table 4.10: The effect of different splitH and splitV on FARR(%) using Manhattan
distances

HHHHHHH
V 1 2 3 4 5 6 7 8

1 1.39 0.77 0.46 0.43 0.39 0.43 0.37 0.89
2 0.79 0.34 0.24 0.24 0.23 0.23 0.28 0.30
3 0.54 0.22 0.18 0.20 0.23 0.24 0.29 0.32
4 0.45 0.22 0.22 0.23 0.26 0.32 0.36 0.44
5 0.47 0.25 0.24 0.27 0.37 0.45 0.54 0.60
6 0.45 0.25 0.30 0.34 0.44 0.55 0.64 0.79
7 0.47 0.30 0.31 0.43 0.55 0.71 0.93 1.08
8 0.50 0.35 0.38 0.50 0.67 0.87 1.10 1.33

4.5.3 Fractional Distance

Figure 4.2 shows the effect of globally applied fractional distances on small and large
feature vectors. The small feature vector that was used in Figure 4.2 was obtained from
feature extraction with no splitting (1 block), while the large feature vector was obtained
from feature extraction with 7×7 splitting (49 blocks). While fractional distances provide
an improvement over the Euclidean distance with the small feature vector, the effect is
much more pronounced with the large feature vector. The best EER obtained with the
small feature vector was with p = 0.4. This correlates with the observation of Vivaracho-
Pascual et al. [68], where the best EER was also obtained with p = 0.4. Accuracy then
sharply worsens and p = 0.1 gave a worse EER than the Euclidean distance. Conversely,
when the feature vector is very large, the Euclidean distance provided a slightly worse
EER in comparison to the small feature vector, but the EER greatly increased when
p < 2.0. The best EER for the large feature vector occurred with p = 0.1, which
was 5.8% better than the best globally applied fractional distance for the smaller feature
vector. This discrepancy with Vivaracho-Pascual et al. is due to their use of insufficiently
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large feature vectors. Additionally, the best EER when the fractional distance was applied
to the large feature vector was 8.8% better than the associated Euclidean distance and
11.2% better than the worst fractional distance with the small feature vector. This proves
that the fractional distances do counter the concentration effect that occurs especially
with large feature vectors.

Figure 4.2: EER in Relation to individual fractional distances for large and small feature
vector sizes

The fractional distances were then applied with local optimization. Table 4.11 shows
the EER results using the locally optimized fractional distance calculations as defined
in Equation 3.20. This means that the best fractional distance within the range 0.1 ≤
p ≤ 2.0 was chosen per individual, since some fractional distances work better than
others for different individuals. The best EER of 14.7% was with one of the largest
feature vectors, 7 × 8. This EER was better than the EER of smallest feature vector,
using fractional distances, by 4.2% and it was better than the best Euclidean distance by
7.0%. This further shows that the fractional distances provide a solution to the concen-
tration phenomenon that occurs with the Euclidean distance, particularly in the case of
offline signature verification. There was a trend of improvement as feature vectors be-
come larger. The fractional distances reached their best improvement in overcoming the
concentration phenomenon between splits 7× 7 and 8× 8, which correlated with feature
vector sizes between 2744 features and 3584 features. There was also an improvement
over globally applied fractional distance, by 1.8%.

The FARR, in Table 4.12, showed a slightly different trend, where the best FARR did
not correlate with the best EER. This is due to choosing the best p-norm value locally
for each individual, rather than a globally used p-norm as was the case of the Euclidean
and Manhattan distances. Due to this localized optimization of the fractional distances,
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larger p-norm values were used for the best EER in some cases, resulting in a worsening
of the concentration phenomenon for larger feature vectors. However, the FARR for frac-
tional distances was still better than the FARR for Euclidean and Manhattan distances,
especially in the case of larger feature vectors.

Table 4.11: The effect of different splitH and splitV on EER(%) using the fractional
distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 18.9 17.7 17.0 16.9 16.7 16.6 16.6 16.7
2 17.9 15.0 16.2 16.1 16.1 15.9 16.0 16.0
3 17.5 16.4 15.6 15.7 15.4 15.2 15.2 15.5
4 17.5 16.2 15.9 15.6 15.4 15.3 15.3 15.2
5 17.5 16.3 15.3 15.4 15.3 15.2 15.0 15.2
6 17.7 16.1 15.7 15.4 15.2 15.0 14.9 14.9
7 17.4 16.2 15.4 15.3 15.0 14.8 14.7 14.7
8 17.7 16.5 15.5 15.3 15.3 14.8 14.7 14.7

Table 4.12: The effect of different splitH and splitV on FARR(%) using fractional dis-
tance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 1.59 0.95 0.53 0.50 0.50 0.48 0.45 0.52
2 1.02 0.48 0.40 0.37 0.38 0.44 0.51 0.52
3 0.70 0.33 0.32 0.30 0.35 0.32 0.42 0.43
4 0.57 0.31 0.37 0.39 0.34 0.40 0.45 0.51
5 0.59 0.34 0.39 0.31 0.45 0.47 0.54 0.57
6 0.54 0.36 0.44 0.44 0.45 0.51 0.54 0.73
7 0.52 0.42 0.41 0.47 0.51 0.66 0.77 0.78
8 0.53 0.54 0.50 0.51 0.60 0.70 0.76 0.89

4.5.4 Weighted Euclidean Distance

Table 4.13 shows the EER results obtained when using the weighted Euclidean distance
calculations, as defined in Equation 3.37. The best EER of 14.5% was with splits 4× 5,
which gave a feature vector that was larger than the feature vector that was obtained
with the best unweighted Euclidean and Manhattan distances. The weighted Euclidean
distance resulted in a better EER than the Euclidean and Manhattan distances, and of an
almost equal EER in comparison with the fractional distance. The low EER is due to
extra weight, or importance, that was given to the most reliable features in the feature
vector, which had the smallest intra-class difference per individual. This weighting also
counteracted the clustering of the concentration phenomenon to a small extent. This was
emphasized further since the largest feature vectors had a lower EER than the smallest
feature vectors.

59



In contrast, the FARR, in Table 4.14, showed a different trend, where the FARR wors-
ened as the feature vectors became larger. This was because the weighting function can
not always differentiate between different sets of signatures and some features in ran-
dom forgeries were given extra weight if the feature was similar to authentic signatures.
This was particularly visible with the largest feature vectors which also experienced the
effects of the concentration phenomenon.

Table 4.13: The effect of different splitH and splitV on EER(%) using the weighted
Euclidean distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 18.6 17.9 16.8 16.5 16.1 16.0 16.0 16.0
2 18.4 16.5 15.8 15.7 15.4 15.3 15.2 15.2
3 17.3 16.0 15.5 15.3 14.6 14.8 14.6 14.9
4 17.4 15.7 15.2 15.1 14.5 14.8 14.8 15.0
5 17.3 15.6 14.7 14.8 14.6 14.6 14.7 15.1
6 17.0 15.7 14.8 15.0 14.7 14.8 14.7 14.8
7 16.9 15.5 14.8 14.9 15.0 14.7 14.9 15.1
8 17.2 15.8 15.1 15.3 15.2 14.9 15.1 15.3

Table 4.14: The effect of different splitH and splitV on FARR(%) using weighted Eu-
clidean distances

HHHHHHH
V 1 2 3 4 5 6 7 8

1 0.98 0.65 0.50 0.48 0.60 0.64 0.71 1.00
2 0.69 0.51 0.69 0.96 1.08 1.44 1.59 1.85
3 0.55 0.62 0.84 1.04 1.32 1.48 1.53 1.80
4 0.54 0.68 0.93 1.26 1.46 1.69 1.84 1.94
5 0.68 0.87 1.33 1.44 1.79 1.86 2.10 2.22
6 0.77 1.14 1.51 1.66 1.93 2.05 2.17 2.42
7 0.81 1.39 1.54 1.82 1.95 2.19 2.37 2.66
8 0.91 1.35 1.70 1.90 2.08 2.39 2.50 2.92

4.5.5 Weighted Manhattan Distance

Table 4.15 shows the EER results using the weighted Manhattan distance calculations
as defined in Equation 3.38. The best EER of 14.3% was obtained with splits 7 × 7,
which gave a feature vector that was larger than those which were obtained with the best
unweighted Euclidean, Manhattan and weighted Euclidean distances. The best weighted
Manhattan distance feature vector was of equal size in comparison to the fractional dis-
tance. The larger feature vector size provided a better EER due to a combination of a
smaller p-norm distance and the weighting by standard deviation, both of which counter-
acted the concentration phenomenon. Due to this combination of weighting and a smaller
p-norm, the weighted Manhattan distance provided a better EER than was obtained with
the Euclidean, Manhattan, fractional and weighted Euclidean distances.
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The FARR, in Table 4.16, showed a similar trend to the FARR of the weighted Eu-
clidean distance, where the FARR worsens as the feature vectors become larger. How-
ever, due to the use of a smaller p-norm value, the largest feature vectors had a smaller
FARR in comparison with the largest feature vectors of the weighed Euclidean distance.

Table 4.15: The effect of different splitH and splitV on EER(%) using the weighted
Manhattan distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 19.4 18.6 17.3 17.3 17.0 16.6 16.7 16.7
2 19.3 17.2 16.6 16.3 15.9 15.6 15.5 15.6
3 18.3 16.5 15.8 15.5 15.1 15.0 14.7 14.7
4 18.1 16.2 15.4 15.3 14.8 14.8 14.5 14.7
5 18.0 16.2 15.0 14.9 14.8 14.7 14.7 14.7
6 17.7 16.1 15.1 15.1 14.9 14.6 14.5 14.7
7 17.4 16.0 15.0 15.0 14.5 14.3 14.3 14.4
8 18.0 16.3 15.2 15.1 14.7 14.6 14.5 14.6

Table 4.16: The effect of different splitH and splitV on FARR(%) using weighted Man-
hattan distances

HHHHHHH
V 1 2 3 4 5 6 7 8

1 0.91 0.56 0.36 0.35 0.31 0.36 0.38 0.50
2 0.63 0.32 0.37 0.48 0.52 0.59 0.70 0.86
3 0.44 0.32 0.36 0.44 0.50 0.66 0.74 0.85
4 0.36 0.32 0.44 0.53 0.62 0.74 0.81 0.95
5 0.39 0.42 0.60 0.67 0.91 0.96 1.11 1.26
6 0.42 0.46 0.70 0.80 1.01 1.16 1.29 1.50
7 0.43 0.53 0.77 0.96 1.02 1.31 1.52 1.71
8 0.47 0.59 0.82 1.01 1.23 1.44 1.70 1.94

4.5.6 Weighted Fractional Distance

Following the success of the weighted Manhattan distance, the weighted fractional dis-
tances were tested. The weighted fractional distance combines the weighting function of
the weighted Euclidean distance with the fractional distances. Table 4.17 shows the EER
results using the weighted fractional distance calculations as defined in Equation 3.39.
This provided the best EER of 12.2%, at splits 7×7, which is a better EER than obtained
from any of the classification techniques tested on the LDP so far. Once again, the use of
fractional distances and weighting allowed greater accuracy with larger feature vectors.
By combining two techniques that are individually better than the Euclidean distance, an
overall much better accuracy was achieved. The worst EER for the weighted fractional
distance was 16.83%, which used no splitting of the image. This was nearly 5% better
than the best results for the standard Euclidean distance. Conversely, the best EER was
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9.5% better than the best recorded Euclidean distance, and 2.5% and 2.7% better than
the fractional and weighted Euclidean distances respectively.

The FARR, in Table 4.18, showed a similar trend to the FARR of the weighted Eu-
clidean distance and the weighted Manhattan distance, where the FARR worsens as the
feature vectors become larger. However, due to the use of a wide range of p-norm values,
the FARR values are better than the FARR for the Euclidean distance, but slightly worse
than for the Manhattan distance.

Table 4.17: The effect of different splitH and splitV on EER(%) using the weighted
fractional distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 16.8 16.1 15.1 14.8 14.5 14.4 14.2 14.6
2 16.7 15.0 14.2 14.0 13.7 13.4 13.3 13.4
3 15.7 14.3 13.6 13.2 12.7 12.6 12.5 12.6
4 15.8 14.0 13.3 13.0 12.5 12.7 12.4 12.5
5 15.3 14.1 12.8 12.7 12.5 12.3 12.3 12.5
6 15.1 13.9 12.9 12.7 12.6 12.5 12.3 12.4
7 15.0 13.8 12.9 12.7 12.5 12.3 12.2 12.4
8 15.4 13.9 13.0 13.0 12.6 12.5 12.5 12.6

Table 4.18: The effect of different splitH and splitV on FARR(%) using weighted frac-
tional distance

HHHHHHH
V 1 2 3 4 5 6 7 8

1 1.08 0.70 0.47 0.42 0.52 0.57 0.57 0.72
2 0.65 0.48 0.54 0.84 0.81 0.93 1.22 1.55
3 0.54 0.42 0.66 0.75 0.75 0.81 1.09 1.33
4 0.56 0.53 0.23 0.91 1.00 1.11 1.14 1.34
5 0.63 0.79 1.00 1.02 1.20 1.28 1.28 1.61
6 0.68 0.76 1.16 1.08 1.34 1.36 1.45 1.67
7 0.68 0.88 1.18 1.36 1.44 1.63 1.64 1.78
8 0.66 1.04 1.21 1.42 1.53 1.84 1.84 2.11

4.5.7 Individually Optimized Resampling

Tables 4.19 to 4.30 show the test results for individually, or locally, optimized resampling
performed in conjunction with each of the above 6 discussed distance-based classification
techniques, namely, the Euclidean, Manhattan, fractional, weighted Euclidean, weighted
Manhattan and weighted fractional distances. Optimizations from 4 split and 9 split
combinations were tested. These are symbolized in the following tables with the [x:y]
notation. For example, [1:2] represents the 4 combinations of 1 × 1, 1 × 2, 2 × 1 and
2×2; while [1:3] represents the 9 combinations of 1×1, 1×2, 1×3, 2×1, 2×2, 2×3,
3 × 1, 3 × 2 and 3 × 3. In each case, the 9 combinations for individual optimizations
performed better than the 4 combinations.
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4.5.7.1 Euclidean distance

The best EER for 4-combination individually optimized resampling on the Euclidean
distance was 18.4% from the [2:3] combination, in Table 4.19, and the best for the 9-
combination was 16.5% from the [1:3] combination, in Table 4.20. The optimal combi-
nations of feature vector sizes correlated with the lowest single Euclidean distance EER,
of 21.7%, from splits 2× 3 when no individual optimization was performed. Both com-
binations provided better EER than non-optimized Euclidean and Manhattan distances.
The FARR values also improved through the individually optimized resampling. This
whows a correlation between individuals with a low EER and a low FARR.

Table 4.19: The effect of implementing individually optimized resampling by choosing
the best Euclidean distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 19.0 0.97
[2:3] 18.4 0.39
[3:4] 18.8 0.29
[4:5] 20.0 0.47
[5:6] 21.0 0.71
[6:7] 22.1 1.20
[7:8] 23.2 2.00

Table 4.20: The effect of implementing individually optimized resampling by choosing
the best Euclidean distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 16.5 0.67
[2:4] 17.1 0.31
[3:5] 17.7 0.34
[4:6] 19.0 0.55
[5:7] 20.1 0.80
[6:8] 21.4 1.36

4.5.7.2 Manhattan distance

The best EER for 4-combination individual optimization on the Manhattan distance was
16.2% from the [2:3] combination, in Table 4.21, and the best for the 9-combination
was 14.3% from the [1:3] combination, in Table 4.22. The optimal combinations of
feature vector sizes correlated with the lowest single Manhattan distance EER, of 19.2%,
from splits 3 × 3 when no individual optimization was performed. The 4-combination
provided better EER than non-optimized Euclidean and Manhattan distances and the
locally optimized Euclidean distance. Conversely, the 9-combination provided an EER
better than or equal to all of the non-locally optimized distance-based measures, except
for the weighted fractional distance whose best EER was 12.2%. The FARR values also
improved through the individually optimized resampling.
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Table 4.21: The effect of implementing individually optimized resampling by choosing
the best Manhattan distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 17.1 0.74
[2:3] 16.2 0.24
[3:4] 16.4 0.18
[4:5] 17.1 0.24
[5:6] 17.7 0.40
[6:7] 18.4 0.65
[7:8] 19.0 0.96

Table 4.22: The effect of implementing individually optimized resampling by choosing
the best Manhattan distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 14.3 0.49
[2:4] 14.9 0.21
[3:5] 15.3 0.21
[4:6] 16.3 0.30
[5:7] 17.1 0.45
[6:8] 17.8 0.69

4.5.7.3 Fractional distance

The worst EER for 4-combination individual optimization on the fractional distances
was 12.7% from the [6:7] combination, in Table 4.23. Conversely, the best for the 9-
combination was 11.3% from the [1:3] combination and worst was 11.8% in the [6:8]
combination, in Table 4.24. The 4-combination provided better EER than all but the
non-optimized weighted fractional distance. Conversely, the 9-combination provided
an EER better than all measures tested before it, including the the weighted fractional
distance, whose best EER was 12.2%. The FARR values also showed an improvement
through the individually optimized resampling.

While the optimal combinations of feature vector sizes correlated with the lowest
single fractional distance EER in the 4-combination, this is not the case with the 9-
combination, even though the best and worst EER are very close, with only a 0.5%
difference between them. This discrepancy is explained by Figure 4.3. In the worse
case scenario, with the combination [6:8], the majority occurring p-norm was 0.1. This
was larger than the second highest occurrence (p = 0.2) by over 40%. Conversely, for
the best case scenario of [1:3], the 5 highest occurring distances were all within a 10%
range of each other, and were the 5 smallest p-norm values. This allowed a higher accu-
racy, different p-norm values were occasionally better for difference individuals among
smaller feature vectors. However, with the largest feature vectors, the p-norm value of
0.1 outperformed all others. A combination of smaller feature vectors with more vari-
able p-norm values can therefore perform slightly better than a large feature vector with
a single dominant p-norm value.
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Table 4.23: The effect of implementing individually optimized resampling by choosing
the best fractional distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 13.6 0.80
[2:3] 13.1 0.29
[3:4] 12.9 0.26
[4:5] 13.0 0.31
[5:6] 12.9 0.36
[6:7] 12.7 0.50
[7:8] 12.8 0.77

Table 4.24: The effect of implementing individually optimized resampling by choosing
the best fractional distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 11.3 0.57
[2:4] 11.7 0.31
[3:5] 11.7 0.29
[4:6] 11.8 0.36
[5:7] 11.9 0.45
[6:8] 11.8 0.62

Figure 4.3: The number of occurrences of each p-norm in the fractional distance with
individually optimized resampling combinations [1:3] and [6:8]
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4.5.7.4 Weighted Euclidean distance

The best EER for 4-combination individual optimization on the weighted Euclidean
distance was 12.1% from the [4:5] combination, in Table 4.25, and the best for the 9-
combination was 10.7% from the [3:5] combination, in Table 4.26. The optimal com-
binations of feature vector sizes correlated with the lowest single weighted Euclidean
distance EER, of 14.5%, from splits 4 × 5 where no individual optimized resampling
was performed. Both the 4-combination and 9-combination provided better EER than
previous distance-based classification measures. This includes the best weighted frac-
tional distance of 12.2% without individually optimized resampling and all of the previ-
ously tested individually optimized resamplings of the LDP. The FARR values correlated
closely with those for the weighted Euclidean distance without individually optimized
resampling.

Table 4.25: The effect of implementing individually optimized resampling by choosing
the best weighted Euclidean distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 13.5 0.70
[2:3] 12.5 0.60
[3:4] 12.2 0.93
[4:5] 12.1 1.46
[5:6] 12.2 1.73
[6:7] 12.6 2.10
[7:8] 13.1 2.38

Table 4.26: The effect of implementing individually optimized resampling by choosing
the best weighted Euclidean distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 11.0 0.70
[2:4] 10.8 0.72
[3:5] 10.7 1.18
[4:6] 11.1 1.59
[5:7] 11.2 1.88
[6:8] 11.8 2.20

4.5.7.5 Weighted Manhattan distance

The best EER for 4-combination individual optimization on the weighted Manhattan
distance was 12.6% from the [4:5] combination, in Table 4.27, and the best for the 9-
combination was 11.4% from the [3:5] combination, in Table 4.28. The optimal com-
binations of feature vector sizes correlated with the lowest single weighted Manhattan
distance EER, of 14.5%, from splits 7×7 where no individual optimized resampling was
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performed. Both the 4-combination and 9-combination provided better EER than previ-
ous distance-based classification measures, where no individually optimized resampling
was performed. However, the individually optimized weighted Manhattan distance per-
formed worse than the individually optimized weighted Euclidean distance for both the
4- and 9-combinations. This is because the standard deviation used for the weighting
equation was calculated in p-norm space of 2 while the Manhattan distance was cal-
culated in p-norm space of 1. The FARR values correlated closely with those for the
weighted Manhattan distance without individually optimized resampling.

Table 4.27: The effect of implementing individually optimized resampling by choosing
the best weighted Manhattan distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 14.0 0.54
[2:3] 13.3 0.31
[3:4] 12.8 0.38
[4:5] 12.6 0.60
[5:6] 12.8 0.93
[6:7] 12.7 1.18
[7:8] 12.9 1.64

Table 4.28: The effect of implementing individually optimized resampling by choosing
the best weighted Manhattan distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 11.5 0.50
[2:4] 11.8 0.34
[3:5] 11.4 0.48
[4:6] 11.6 0.68
[5:7] 11.9 1.06
[6:8] 12.0 1.27

4.5.7.6 Weighted fractional distance

The best EER for 4-combination individual optimization on the weighted fractional dis-
tance was 10.3% from the [4:5] combination, in Table 4.29, and the best for the 9-
combination was 9.25% from the [3:5] combination, in Table 4.30. The best EER for
both the 4- and 9-combinations of the individually optimized weighted fractional dis-
tance performed better than all other test before it, while the 9-combination performed
better than the 4-combination. This high accuracy is due to choosing both the best p-
norm and best split size per individual, i.e. locally optimized classification.

The optimal split sizes for the individually optimized fractional distance did not cor-
relate with the optimal split sizes for the non-locally optimized weighted fractional dis-
tance, although there was a mere difference of 0.75% between the best and worst EER.
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Table 4.29: The effect of implementing individually optimized resampling by choosing
the best weighted fractional distance EER from 4 feature vectors

Split
Range

EER/% FARR/%

[1:2] 12.0 0.69
[2:3] 11.2 0.52
[3:4] 10.7 0.66
[4:5] 10.3 0.95
[5:6] 10.5 1.19
[6:7] 10.6 1.37
[7:8] 10.8 1.60

Table 4.30: The effect of implementing individually optimized resampling by choosing
the best weighted fractional distance EER from 9 feature vectors

Split
Range

EER/% FARR/%

[1:3] 9.65 0.60
[2:4] 9.66 0.49
[3:5] 9.25 0.80
[4:6] 9.50 0.97
[5:7] 9.60 1.18
[6:8] 10.0 1.36

An analysis of Figure 4.4 showed that the pattern for the highest EER, from combination
[6:8], was similar to that for the highest EER for the individually optimized fractional
distance, in Figure 4.3. In both cases, the smallest p-norm size of 0.1 had the greatest
percentage of occurrences by far. Similarly, the best EER from combination [3:5] of
individually optimized weighted fractional distance had a comparable pattern with the
best EER of [1:3] for the individually optimized fractional distance. In both cases, the
first 4 p-norm distances were among the largest and within a close range. Additionally,
the greatest occurrence was still for the p-norm value of 0.1. The smaller feature vectors
in combination [1:3] provided an EER in between the highest and lowest. In Figure 4.4,
it was seen that the greatest occurrence was for p-norm of 0.6 rather than 0.1. The latter
provided much lower EER values with larger feature vector sizes. The larger p-norm of
0.6 was more effect with smaller feature vectors, in comparison with 0.1. However, 0.1
performed much better than 0.6 in comparison with larger feature vectors.
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Figure 4.4: The number of occurrences of each p-norm in the weighted fractional dis-
tance with individually optimized resampling combinations [1:3] and [6:8]

4.6 Literature Comparison

4.6.1 Literature Comparison of EMDF

The work of Nguyen et al. (2009) [48] was chosen for the comparison and benchmark-
ing of the EMDF. They performed many different configurations to find the optimal
supervised learning technique (SLT) classification technique for the chosen feature vec-
tors. Their results were obtained through tests with: multilayer perceptrons, also called
artificial neural networks, with both radial basis function (RBF) and back propagation
kernels; support vector machines (SVM) with linear, polynomial and RBF kernels; and
different configurations of authentic and forged signatures for the training and testing
phase. According to [12], for all feature extractions, the rs strip size was 5 and the
max transitions were 3 or 4. The smaller feature vector size with max transition of
3 provided better accuracy with a RBF neural network kernel for classification. It is as-
sumed that a max transition of 3 is used for all of their future work. Their best results
were found in [48], where an SVM with an RBF kernel was used to obtain an EER of
17.25% and FARR of 0.08%. Signatures of 160 GPDS individuals were used [66].

In this work, the same feature extraction technique was implemented and tested with
multiple distance-based classification techniques, including the Euclidean, fractional,
weighted Euclidean and weighted fractional distances. Signatures of 300 GPDS individ-
uals were used. A larger range of rs strip and max transition sizes were tested. This
range was from 2 to 8, where both sizes were kept equal. While the best Euclidean and
Manhattan distance performances for the EMDF was worse than the literature result, at
19.2% and 18.7% respectively, the fractional, weighted Euclidean, weighted Manhattan
and weighted fractional distances all performed much better, at 16.0%, 15.3%, 16.9% and
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13.8%. It was seen that the weighted fractional distance performed better than the SVM
with an RBF kernel for the classification of the EMDF. Further, individually optimized
resampling was performed, where the best resampling (rs strip and max transition)
sizes per individual were chosen. The best individually optimized resampling was for
the weighted fractional distance, with an EER of 10.8% and corresponding FARR of
0.67%. The obtained EER was better than the best results in the literature by 6.5% and
both systems obtained an FARR of below 1%.

4.6.2 Literature Comparison of LDP

Ferrer et al. [21] tested the Local Binary Pattern (LBP) and Local Directional Pattern
(LDP), separately, using several data sets. Their results are used for the comparison
and benchmarking of LDP results that were obtained in this work. These sets were 75
individuals from the MCYT database [53], and 75, 300 and 960 users from the GPDS
database [66]. While the EER with the data sets using 75 individuals was low, these
results can not be used for comparison, since the small size of the data set brings the pre-
cision and accuracy of results into question. A better comparison was the results obtained
with the data sets containing 300 and 960 individuals. Classification was performed with
a Least Squares SVM (LS-SVM) with an RBF kernel. The signatures were split into 12
blocks for the feature extraction, consisting of 4 vertical splits and 3 horizontal splits,
and an overlap of 60%. From these, the best EER was 17.8% using 300 individuals of
the GPDS database, with a corresponding FARR of 0.68%.

In this work, the same feature extraction technique was implemented and tested with
multiple distance-based classification techniques, including the Euclidean, fractional,
weighted Euclidean and weighted fractional distances. Signatures of 300 GPDS indi-
viduals were used, which was also the same database used for the best results in [21].
A larger range of splits sizes were tested. This range was from 1 to 8 splits in both
the vertical and horizontal directions. While the best Euclidean and Manhattan distance
performances for the EMDF were worse than the literature result, at 21.7% and 19.2%
respectively, the fractional, weighted Euclidean, weighted Manhattan and weighted frac-
tional distances all performed much better, at 14.7%, 14.5%, 14.3% and 12.2%. It was
seen that the weighted fractional distance performed better than the LS-SVM with an
RBF kernel for the classification of the LDP. Further, individually optimized resampling
was performed, where the best resampled block sizes per individual were chosen from
a possibility of either 4 or 9. The best individually optimized resampling was for the
weighted fractional distance, with an EER of 9.25% and corresponding FARR of 0.80%.
The obtained EER is better than the best results in the literature by 8.6% and both sys-
tems obtained an FARR of below 1%. The literature comparison with the best results is
summarized in Table 4.31.
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Table 4.31: A comparison of results from literature with the results obtained in this work
Feature
Extraction

Classification Database EER/% FARR/%

EMDF [48] SVM, RBF kernel GPDS160 17.25 0.08
LDP [21] LS-SVM, RBF kernel GPDS300 17.8 0.68
EMDF
(current)

weighted fractional distance, with
individually optimized resampling

GPDS300 10.8 0.67

LDP
(current)

weighted fractional distance, with
individually optimized resampling

GPDS300 9.25 0.80

4.7 Optimal Design Overview

Figure 4.5 shows the detailed configuration of the verification system, which was briefly
described in Figure 3.1, that achieved the best results. For preprocessing the images were
binarized, dilated and then cropped to the bounding box. For feature extraction, LDP
features performed better than the EMDF features. For classification, a combination
of the weighted fractional distances and individually optimized resampling , which are
distance-based classification techniques, provided the best accuracy.

Figure 4.5: Overview of the design of a biometric verification system with specified
optimal configurations
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4.8 Implementation Scenarios

The most likely scenarios for the use of an offline signature verification system are to
verify the identity of signers on bank cheques and to assist questioned document exam-
iners in forensic science laboratories. In both cases, known authentic signatures will be
captured using a scanner device. These will be used to generate the reference feature vec-
tor and to train the system. The signature from a new cheque, or a questioned document
will also be scanned into the system, and the extracted feature vector will be compared
with the reference feature vector. This automated technique can improve productivity.
Since automated signature verification systems are more accurate than humans, imple-
mentation will increase security and reduce the occurrences of identity theft and forged
documents.

4.9 Conclusion

Results were obtained and analyzed for distance-based classification with the EMDF and
LDP feature extraction techniques. The weighted fractional distance with individually
optimized resampling produced the best EER in this work, and the LDP performed better
than the EMDF. The distance-based classification technique also produced better results
than supervised learning techniques in literature when applied to the sample feature ex-
traction techniques. In the next chapter, the dissertation will be concluded and possible
extensions will be discussed.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Work

In this dissertation, a framework for the verification of offline signatures, using distance-
based classification techniques was presented. Firstly, a detailed review of literature in
the area was provided. Then methods and techniques employed were described. Results
were discussed, with comparisons between different distance-based classification tech-
niques, the effects of using different feature extraction techniques with the distance-based
classification and a comparison with results from literature.

It was found that the cosine similarity measure, Mahalanobis, Canberra and Ratio dis-
tances performed poorly during classification. The Euclidean, Manhattan and fractional
distances, which are all p-norm distances, performed much better. Weighted p-norm dis-
tances and individually optimized resampling, in conjunction with p-norm distances also
performed well. The best EER of 9.25% was obtained with the Local Directional Pattern
feature extraction technique, using individually optimized weighted fractional distances
for classification. This result is better than literature results using the same feature ex-
traction technique, and SLTs for classification.

5.2 Recommendations for Future Work

Limitations and suggestions for improvement of this offline signature verification system
are:

• Effect of time: By nature biometric traits change over a long period of time. Coun-
teracting this limitation is an ongoing research area.

• Multi-modal: fusion of signature biometrics with other biometric modalities could
be considered to improve the security of systems.

• Databases: The proposed system was tested with the GPDS database, which
comprises signatures of Spanish individuals. It would be interesting to observe
the effects of signatures based on other language character sets, such as Chinese,
Japanese and Arabic.
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[65] P. Tulys, B. Scorić, and T. Kevenaar, editors. Security with Noisy Data: Private
Biometrics Secure Key Storage and Anti-Counterfeiting. Springer-Verlag, 2007. 6

[66] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso. Off-line handwritten
signature gpds-960 corpus. In Ninth International Conference on Document Anal-
ysis and Recognition, pages 764 – 768. IEEE Computer Society, 2007. 10, 43, 45,
69, 70

[67] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso. Offline signature ver-
ification based on pseudo-cepstral coefficients. In Document Analysis and Recog-
nition, 2009. ICDAR’09. 10th International Conference on, pages 126–130. IEEE,
2009. 14

[68] C. Vivaracho-Pascual, M. Faundez-Zanuy, and J. M. Pascual. An efficient low
cost approach for on-line signature recognition based on length normalization and
fractional distances. Pattern Recognition, 42(1):183 – 193, 2009. 13, 19, 35, 39,
47, 57

[69] B. Widrow, M. E. Hoff, et al. Adaptive switching circuits. 1960. 15

[70] R. V. Yampolskiy and V. Govindaraju. Behavioural biometrics: a survey and clas-
sification. International Journal of Biometrics, 1, 2008. 6

[71] D. Y. Yeung, H. Chang, Y. Xiong, S. E. George, R. S. Kashi, T. Matsumoto, and
G. Rigoll. SVC2004: First International Signature Verification Competition. In
International Conference on Biometric Authentication, pages 16–22, 2004. 10

[72] M. B. Yilmaz, B. Yanikoglu, C. Tirkaz, and A. Kholmatov. Offline signature ver-
ification using classifier combination of HOG and LBP features. In Biometrics
(IJCB), 2011 International Joint Conference on, pages 1–7. IEEE, 2011. 11, 14

[73] D. Zhang and A. K. Jain, editors. First International Conference on Biometric
Authentication, volume 3072 of Lecture Notes in Computer Science, Hong Kong,
July 2004. Springer Verlag. 7

[74] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital patterns.
Communications of the ACM, pages 236–239, March 1984. 22, 25, 32

[75] Y. Zhu, T. Tan, and Y. Wang. Biometric personal identification based on iris pat-
terns. In Pattern Recognition, 2000. Proceedings. 15th International Conference
on, volume 2, pages 801–804. IEEE, 2000. 13, 18, 42

79

http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html
http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html
http://people.revoledu.com/kardi/tutorial/Similarity/MahalanobisDistance.html


Appendix A

Conference paper accepted for and
presented at IEEE ICSPCC ’12

• Conference Name: 2012 International Conference on Signal Processing, Commu-
nications and Computing

• Conference Location: Hong Kong

• Conference Date: 12 - 15 August 2012

• Conference Publisher: IEEE

80



HANDWRITTEN SIGNATURE VERIFICATION USING WEIGHTED FRACTIONAL
DISTANCE CLASSIFICATION

Y. Moolla1,2, S. Viriri1, F.V. Nelwamondo2, J.R. Tapamo3

1 School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal

Durban, South Africa
{viriris; 205500527}@ukzn.ac.za

2 Modelling and Digital Science Unit
Council for Scientific and Industrial Research

Pretoria, South Africa
fnelwamondo@csir.co.za

3 School of Engineering
University of KwaZulu-Natal

Durban, South Africa
tapamoj@ukzn.ac.za

ABSTRACT

Signatures are one of the behavioural biometric traits, which
are widely used as a means of personal verification. There-
fore, they require efficient and accurate methods of authen-
ticating users. The use of a single distance-based classifi-
cation technique normally results in a lower accuracy com-
pared to supervised learning techniques. This paper inves-
tigates the use of a combination of multiple distance-based
classification techniques, namely individually optimized re-
sampling, weighted Euclidean distance, fractional distance
and weighted fractional distance. Results are compared to a
similar system that uses support vector machines. It is shown
that competitive levels of accuracy can be obtained using
distance-based classification. The best accuracy obtained is
89.2%.

Index Terms— Pattern Recognition; Biometrics, Hand-
written Signatures, Optimized Re-sampling, Weighted Eu-
clidean Distance, Fractional Distance

1. INTRODUCTION

Biometrics is the use of one or more intrinsic physical or be-
havioural human characteristics to verify or identify a person.
Biometric traits should be unique, universal, long lasting, col-
lectible, commonly accepted, difficult to falsely duplicate and
identifiable efficiently and accurately by machine. Examples
of physiological biometric traits include fingerprints, DNA,

hand and palm geometry and iris recognition, whereas exam-
ples of behavioural biometric (behaviometric) traits include
voice recognition, writing patterns and signatures [1].

The basic process of automated biometrics verification in-
volves capturing the biometric traits onto a machine and then
using biometric feature extraction algorithms to create a dig-
ital representation template of the trait. For authentication of
an individual, the system creates a biometric template from
newly captured data and compares the two templates [1].

A signature, which is one of the oldest used and most
widely accepted biometric for identification and verification
[2], is a handwritten depiction of a persons name, nickname
or other personal symbol. It is classified as a behavioural bio-
metric trait.

There are two ways to capture signatures: online and of-
fline. Offline signatures are static images while online sig-
natures are dynamic and capture the progress of signature
writing as a function of time. Since online signatures hold a
greater amount of information, they intrinsically allow greater
accuracy than a static image. However, there are still many
systems that require the improved accuracy of offline signa-
tures. For instance, online signatures are not available for
bank cheques or credit cards, and accurate offline signature
verification is essential. The electronic writing pads for the
capture of offline signatures are also much more cost effec-
tive than that for online signatures. Thus, the availability of
competitively accurate offline signature verification could im-
prove security measures for businesses in poorer emerging



markets.
There are many different techniques for classifying signa-

tures and other biometrics. They can be broadly categorized
into supervised learning techniques (SLTs) and distance-
based classification techniques. SLTs include neural networks
[3], hidden Markov models [4], support vector machines
[5] and fuzzy logic [6]. Distance-based techniques include
Euclidean distance, Mahalanobis [7], Manhattan distance,
weighted Euclidean distances [8] and fractional distances [9].

SLTs in general provide a greater accuracy than basic
distance-based techniques. This paper aims to combine sev-
eral distance-based techniques to gain accuracy comparable
with SLTs. The weighted Euclidean distance and fractional
distance classification techniques are investigated. The two
are then combined to create a novel weighted fractional dis-
tance classification.

Individually optimized re-sampling space normalization
of the feature vector is also investigated to further improve the
overall accuracy of the system. The feature extraction tech-
niques from Nguyen et. al. [5] are used, namely, the Direc-
tion, Modified Direction, Energy, Ratio and Maxima features.
These features were re-sampled to a set static size so that all
feature vectors were of equal length. Vivaracho-Pascual et.
al. [9] tested several different re-sampled sizes for a different
online feature extraction, but settled on a single re-sampled
size for all signatures. However, they suggest optimization
of the re-sampled size for each user as an interesting study.
This paper aims to investigate the effect of individually op-
timized re-sampling on the modified direction feature from
[5]. Results achieved are compared to those obtained with
a supervised classification technique using the same feature
extraction techniques .

Feature extraction and classification techniques are de-
scribed in section 2. Results obtained are discussed in section
3 and the conclusion is given in section 4.

2. METHODS AND TECHNIQUES

Verification of signatures is a multi-step process.Firstly, pre-
processing is performed to clean the original image and re-
move noise and other unwanted data and prepare the next
step. The next step is feature extraction, which entails extract-
ing essential information. The third step is training, where
feature vectors from known authentic and forged signatures
are compared for the calibration of the classification tech-
nique. The fourth step, classification, is where the system
must accurately and independently determine whether signa-
tures are authentic or forged.

In our context, preprocessing requires binarization, find-
ing the bounding box and thinning of the signature image.
The Zhang-Suen thinning algorithm [10] is used.

Features used in this paper are the one used in [5], namely,
direction, modified direction, energy, ratio and maxima fea-
tures.

In the training and classification phases, dynamic re-
sampling to normalize the feature vector [11], Euclidean dis-
tance, weighted Euclidean distance [8], fractional distances
[9], and weighted fractional distances are tested.

Feature extraction techniques used are described in sec-
tion 2.1, and classification techniques are described in section
2.2.

2.1. Feature Extraction

2.1.1. Direction Feature

The direction feature extraction technique extracts the direc-
tion of each segment between intersections within a signature,
i.e. whether the segment is horizontal, vertical, diagonal left
or diagonal right. It yields 9 biometric features, namely, the
total length of each line direction set (4 features), the number
of lines in each direction set (4 features) and the total num-
ber of intersection points (1 feature). Detailed information on
direction feature can be found in [11].

2.1.2. Modified Direction Feature

The modified direction feature extraction technique [11, 12]
is the result of a combination of the direction feature [13] and
the transition feature. It has been used as part of optical char-
acter recognition systems. A series of steps are required:

Firstly, the direction feature extraction is performed so as
to label each line segment with a direction.

Then, the image is parsed in four directions, namely, right
to left, left to right, top to bottom and bottom to top. In each
direction, the location transition (LT) and direction transition
(DT) features are recorded. LT is the location of the tran-
sition of pixels from background to foreground and DT is
the direction of the line segment at the point of transition.
For the sake of uniformity, limits are placed to the maxi-
mum number of transitions, max transitions, recorded in
any given direction. This provided 8 arrays of features with
sizesmax transitions× (image height or image width).

Finally, window re-sampling is performed. This means
that the height and width values of each array are re-sampled
for normalization, or averaging, so that feature vectors for all
signatures of an individual are uniform in size. Different num-
bers of re-sampling strips (rs strips) are tested.

To formalize the window re-sampling, let m be the num-
ber of maximumtransitions and p be the number pf pixels
in height or width where each pixel now stores the LT or DT
value for the low or column, so that the transitioned image
will be IT (p,m). Let s be the number of pixels in one strip,
as calculated in Equation (1). Let r be the number of rsstrips
and v be the value of an element in a calculated rs strip.

s = p/r (1)

Then the resulting set of rs strip values is
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Let vij be a single calculated component where 1 ≤ i ≤ r
and 1 ≤ j ≤ m. Then the value vij is calculated as

vij =
1

s

k<(n×(s+1))−1∑

k=n×s

I(k, j) (3)

This provides 8 feature vectors (4 × LT + 4 × DT) with
sizes max transitions x rs strips (of height or width). Di-
rection features are added to this feature vector. For exam-
ple, if a maximum of 4 transitions are used, along with re-
sampling of 5, the feature vector will have 169 components.

More detailed information on the modified direction fea-
ture can be read in [11].

2.1.3. Other Feature Extractions

The Energy, Ratio and Maxima feature extractions were used
as described by Nguyen et. al. [5].

2.2. Classification

2.2.1. Euclidean distance and thresholds

One of the most common distance-based classification tech-
niques for determining the accuracy of biometric systems is
the calculation of the Euclidean distance between a reference
vector (derived as a mean of several authentic signatures of
an individual) and other feature vectors.

Authentic signatures are expected to have Euclidean dis-
tance values below a certain threshold while forged signatures
would have values above that threshold. Authentic signa-
tures with distances above the threshold are regarded as false
negatives and contribute to the False Rejection Rate (FRR)
while forged signatures with distances below the threshold
are regarded as false positives and contribute to the False Ac-
ceptance Rate (FAR). This is further split into the FAR for
skilled forgeries (FARS) and for random forgeries (FARR).
The threshold is chosen where the distance for the FRR and
FARS are equal. This rate is also called the Equal Error Rate
(ERR).

The equation for determining the Euclidean distance be-
tween vectors x and y is computed as defined in Equation (4).

||x− y||p = (Σ|(x− y)|p)1/p (4)

where p = 2

2.2.2. Weighted Euclidean distance

The weighted Euclidean distance measure is a technique
adapted from [8] to improve the classification accuracy by
adding weight, or statistical importance, to the most reli-
able features from the feature vector. Firstly, the standard
deviation for the reference signatures is obtained.

Let the n reference signatures be
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Let xji be the jth component of the ith reference signature
where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then the mean of the jth component the reference signa-
tures, µj , is computed as in Equation (6)

µj =
1

n

i<n∑

i=0

xji (6)

and their standard deviation σj is defined in Equation (7) as

σj =

√√√√ 1

n
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(xji − µj)2 (7)

The weighted Euclidean distance can then be calculated
using the standard deviation as

||x− y||p =




j<m∑

j=0

|(xj − yj)|p
σj




1/p

(8)

where p = 2.

2.2.3. Fractional distances

A drawback of using Euclidean and other p-norm distances
where p ∈ N1 is that as the vectors get larger, the distance
values tend to cluster. This is called the concentration phe-
nomenon. To overcome this limitation of distance-based clas-
sification, Vivaracho-Pascual et. al. [9] introduced the use of
fractional p-norm distances.

The equation for determining fractional p-norm distance
between vectors x and y is computed as defined in equation
(9)

min(||x− y||p) = (Σ|(x− y)|p)1/p (9)

where 0.1 ≤ p ≤ 2.0.
The optimal value of p is when the distance calculated

using Equation (9) is at its minimum for all values of p within
the given range.



2.2.4. Weighted fractional distances

The fractional distances and weighted Euclidean distance can
then be combined to form the weighted fractional distance as
defined in equation (10)

min(||x− y||p) =
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|(xj − yj)|p
σj




1/p

(10)

where 0.1 ≤ p ≤ 2.0
Just like with Equation (9), the optimal value of p is when

the distance calculated using Equation (10) is at its minimum
for all values of p within the given range.

2.2.5. Individually optimized re-sampling

Re-sampling of the feature vector allows it to be re-sized.
This is a form of spatial normalization. Different re-sampling
sizes results in changing accuracies. By choosing the best re-
sampling size per user, it is expected that the overall accuracy
of the system may be optimized.

The re-sampling method is described in Section 2.1.2.
Different rs strips sizes were used to change the size of the
feature vector. The smallest possible was an rs strip size of
2. Tests with incrementally large sizes were used, until size
8. By this point, the re-sampling was having little positive
impact on the accuracy and the last feature vector size was
negatively affecting processing time. It was decided to keep
the maximum rs strip size of 8.

3. RESULTS AND DISCUSSION

3.1. Data Set

Experiments were performed using signatures from the Grupo
de Procesado Digital de Senales (GPDS) signature database
[14]. The database consists of black and white signatures
of 300 different individuals, with 24 authentic copies and 30
skilled forgeries for each individual.

10 authentic signatures are used to create the reference
signature, the other 14 authentic signatures and the 30 skilled
forgeries are used for the classification and verification. For
random forgeries per individual, a single authentic signature
from each of the other 299 individuals is used.

3.2. Results

Quantification of result accuracy is measured in terms of the
False Rejection Rate (FRR); False Acceptance Rate (FAR)
which is further broken down into FAR for skilled forgeries
(FARS) and FAR for random forgeries (FARR); and the Equal
Error Rate (ERR), which is the point at which the FRR and
FARS converge. Fig. 1 shows an example of the ROC curve
for obtaining the EER.

Table 1. The effect of different re-sampling sizes using the
Euclidean distance

rs
strips

vector
size

FRR
/%

FARS
/%

FARR
/%

2 49 20.11 20.11 0.7268

3 89 19.23 19.23 0.4436

4 145 19.41 19.41 0.3667

5 217 19.73 19.73 0.3633

6 305 20.17 20.17 0.3567

7 409 20.16 20.16 0.4391

8 527 20.35 20.35 0.4882

min(2:8) mixed 15.32 15.32 0.5417

Table 2. The effect of different re-sampling sizes using the
weighted Euclidean distance

rs
strips

vector
size

FRR
/%

FARS
/%

FARR
/%

2 49 15.19 15.19 0.2429

3 89 15.31 15.31 0.1973

4 145 16.14 16.14 0.3567

5 217 18.03 18.03 0.7101

6 305 20.15 20.15 1.8138

7 409 20.82 20.82 3.367

8 527 21.97 21.97 5.680

min(2:8) mixed 11.72 11.72 0.7056

Table 3. The effect of different re-sampling sizes using frac-
tional distances

rs
strips

vector
size

FRR
/%

FARS
/%

FARR
/%

2 49 15.99 15.99 0.5986

3 89 16.52 16.52 0.4525

4 145 17.07 17.07 0.4213

5 217 17.29 17.29 0.3767

6 305 17.39 17.39 0.4035

7 409 17.54 17.54 0.5217

8 527 17.61 17.61 0.6788

min(2:8) mixed 12.85 12.85 0.5718

Table 1 shows the results of tests using different re-
sampling sizes, without the weighting function in the Eu-
clidean distance calculations. The resampling sizes are deter-



Table 4. The effect of different re-sampling sizes using
weighted fractional distances

rs
strips

vector
size

FRR
/%

FARS
/%

FARR
/%

2 49 13.82 13.82 0.2541

3 89 14.31 14.31 0.2352

4 145 14.81 14.81 0.2942

5 217 15.71 15.71 0.5295

6 305 16.35 16.35 0.9821

7 409 16.52 16.52 1.512

8 527 17.09 17.09 2.457

min(2:8) mixed 10.76 10.76 0.6655

mined by the rs strip size in the MDF extraction technique.
Sizes between 2 and 8 are tested. In the final row, results
for individually optimized dynamic re-sampling are shown,
i.e. for each individual, the best re-sampling between 2 and
8, is chosen. The worst EER was 20.35% for re-sampling
size 8, while the best EER of 15.32% was for the dynamic
re-sampling. Using dynamic re-sampling improves the EER
over static re-sampling by up to over 5%.

This experiment is repeated using the weighted Euclidean
distance, the fractional distance and weighted fractional dis-
tance functions. These results are shown in Tables 2, 3 and
4 respectively. In each case, the individually optimized re-
sampling improved the accuracy of the classification.

An analysis of the static re-sampling results shows that the
weighted Euclidean distance provides a great improvement
over the traditional Euclidean distance when feature vec-
tors are small in size, but it begins to have an adverse effect
when the feature vectors become too large. By combining
the weighted Euclidean distance with individually optimized
resampling, the EER becomes 11.72%. This is better than
the 15.32% from the combination of unweighted Euclidean
distance with optimized re-sampling.

The unweighted fractional distances have slightly worse
results compared to weighted Euclidean distance for smaller
re-sampling sizes, but still better than the unweighted Eu-
clidean distance. With larger re-sampling sizes, when the
feature vectors become larger, the effect of fractional dis-
tances becomes more pronounced and provides better results
than both weighted and unweighted Euclidean distances. By
combining this with individually optimized re-sampling, the
EER obtained is 12.85%. This is better in comparison to
unweighted Euclidean distance, but worst in comparison to
weighted Euclidean distance.

The final analysis was of the weighted fractional dis-
tances, which combines the weighted Euclidean distance and
fractional distance measures. This provides the best accuracy

for all static re-sampling sizes. By combining these weighted
fractional distances with individually optimized re-sampling,
an EER of 10.76% was obtained. This is better than all of the
previous combinations.

In all cases, the dynamic re-sampling combination pro-
vides a much higher accuracy than any individual static re-
sampling size. Thus, the greatest accuracy was achieved by
a combination of weighted distances, fractional distances and
dynamic re-sampling with an EER of 10.76%. This is more
accurate by almost 10% in comparison to any non-optimized
resampling with a standard Euclidean distance measure.

Fig. 1. Calculation of EER on applying the weighted frac-
tional distances with individually optimized resampling

3.3. Literature Comparison

The work of Nguyen et. al. [5], [15] was chosen for the
comparison in this paper. Their work is well documented and
experimentally sound. They performed many different con-
figurations to find the optimal supervised learning technique
(SLT) classification technique for the chosen feature vectors.
Tests were performed with multilayer perceptrons with both
radial basis function (RBF) and back propagation kernels;
support vector machines (SVM) with linear, polynomial and
RBF kernels; and different configurations of authentic and
forged signatures for the training and testing phase. Thier
best results were found in [5], where an SVM with an RBF
kernel were used to obtain an EER of 17.25% and FARR of
0.08%. In this work, we obtained a best EER of 10.76% with
an FARR of 0.67% using locally optimized distance-based
classification techniques instead. The obtained EER is bet-
ter than the best results in the literature by 6.5%. While both
systems obtained an FARR of below 1%, the better FARR by
Nguyen et. al. can be attributed to their training of the SVM
using random forgeries which was not done in our system.

While further tests need to be performed, especially with
regards to the training set used, and different feature extrac-



tions from literature, the results are promising.

4. CONCLUSION

Using the Modified Direction, Energy, Ratio and Maxima
feature extraction techniques; and a combination of weighted
fractional distance and individually optimized re-sampling
classification techniques, an improved Equal Error Rate
(EER) of 10.76% is obtained against skilled forgeries. This is
compared to literature results where supervised learning tech-
niques were applied to the same feature extraction techniques,
which obtained an EER of 17.8%.

The weighted fractional distances technique works bet-
ter as a whole than either of its individual constituent parts,
namely, the weighted Euclidean distance and fraction dis-
tances. Individually optimizing the re-sampling of feature
vectors also allows for improvement of overall accuracy.

It can be concluded that in some instances of signature
verification, a combination of distance-based classification
techniques can to be more accurate than supervised learning
techniques.
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ABSTRACT
Although handwritten signature verification has been ex-
tensively researched, it has not achieved optimum accu-
racy rate yet. Therefore, efficient and accurate signa-
ture verification techniques are required since signatures
are still widely used as a means of personal verification.
This paper presents an alternative efficient classification
technique to supervised learning classification techniques.
The signature features are extracted using the Local Di-
rectional Pattern algorithm, and classified using a com-
bination of multiple distance-based techniques: weighted
Euclidean distance, fractional distance and weighted frac-
tional distance. This combination of multiple distance-
based classification techniques achieved accuracy rate of
87.8%, which is comparable to a similar system that used
Support Vector Machines, a supervised learning technique.
Therefore, competitive levels of accuracy can be obtained
using distance-based classification.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Similarity mea-
sures; I.4.7 [Image Processing]: Feature Measurement—
Feature representation

General Terms
Pattern Recognition; Biometrics

Keywords
Handwritten Signatures; Weighted Euclidean Distance;
Fractional Distance
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Biometrics is the use of one or more intrinsic physical
or behavioural human characteristics to verify or iden-
tify a person. Biometric traits should be unique, univer-
sal, long lasting, collectible, commonly accepted, difficult
to falsely duplicate and identifiable efficiently and accu-
rately by machine. Examples of physiological biometric
traits include fingerprints, DNA, hand and palm geome-
try and iris recognition, whereas examples of behavioural
biometric (behaviometric) traits include voice recognition,
writing patterns and signatures [6].

The basic process of automated biometrics verification
involves capturing the biometric traits onto a machine and
then using biometric feature extraction algorithms to cre-
ate a digital representation template of the trait. For au-
thentication of an individual, the system creates a biomet-
ric template from newly captured data and compares the
two templates [6].

Signatures, which are one of the oldest used and most
widely accepted biometric for identification and verifica-
tion [13], are handwritten depictions of a person’s name,
nickname or other personal symbol. They are classified as
a behavioural biometric trait.

There are two ways to capture signatures: online and
offline. Offline signatures are static images while online
signatures are dynamic and capture the progress of signa-
ture writing as a factor of time. Since online signatures
hold a greater amount of information, they intrinsically al-
low greater accuracy than a static image. However, there
are still many systems that require the improved accu-
racy of offline signatures. For instance, online signatures
are not available for bank cheques or credit cards, and ac-
curate offline signature verification is essential. The elec-
tronic writing pads for the capture of offline signatures
are also much more cost effective than that for online sig-
natures. Thus, the availability of competitively accurate
offline signature verification could improve security mea-
sures for businesses in poorer emerging markets.

Many techniques exist for the classification of signatures
and other biometrics. They can be broadly categorized
into supervised learning techniques (SLTs) and distance-
based classification techniques. SLTs include neural net-
works [4], hidden Markov models [1], support vector ma-



chines [11] and fuzzy logic [8]. Linear techniques include
Euclidean distance, Mahalanobis [9], Manhattan distance,
weighted Euclidean distances [10] and fractional distances
[12].

SLTs, in general, provide a greater accuracy than basic
distance-based classification techniques. This paper aims
to combine several distance-based techniques to gain ac-
curacy comparable with SLTs. The weighted Euclidean
distance and fractional distance classification techniques
are investigated. The two are then combined to create a
novel weighted fractional distance classification. This pa-
per aims to investigate this novel classification technique.
The results are compared to those of a SLT that classified
signatures using the same feature extraction techniques.

The feature extraction and classification techniques are
described in section 2. The results obtained are discussed
in section 3 and the conclusion is given in section 4.

2. TECHNIQUES AND METHODOLOGY
The first step in image processing based signature veri-

fication is to capture the signature image. The likelihood
of this image containing noise is high. The next important
step is then to preprocess this image, in order to remove
noise and unwanted data, while preserving essential in-
formation for the final decision. Features are thereafter
extracted and represented in a certain way; in this ar-
ticle, they are represented as vectors. A training is the
carried out, where feature vectors from known authentic
and forged signatures are compared for the calibration of
the classification technique. The last step, classification,
is where the system must accurately and independently
determine whether signatures are authentic or forged.

Preprocessing includes smoothing, binarization, dilation
and finding the bounding box of the signature image.

For feature extraction, Local Directional Pattern (LDP)
is used. LDP is a gray-scale texture based feature method
that characterizes the spatial structure; it was first intro-
duced by Jabid et al [5], and used to classify gender; Kabir
et al [7] later used one of its variant for facial expression
recognition. More recently Ferrer et. al [3] performed
signature verification with LDP.

In this paper we evaluate Local Directional Pattern per-
formance in signature verification when combining multi-
ple similarity measures, namely Euclidean distance,
weighted Euclidean distance [10], fractional distances [12],
and weighted fractional distances.

The feature extraction techniques used are described in
section 2.1, and the classification techniques are described
in section 2.2.

2.1 Feature Extraction
Feature extraction is performed using Local Directional

Pattern[5]. This technique utilizes the 8 orientations of
Kirsch masks, as shown in Figure 1, to detect the presence
of edges or corners and their orientations. Values of the
8 mask orientations, m0, m1, . . . , m7, are obtained by
performing a convolution of Kirsch masks with the image
at each pixel, followed by a binarization. In other words,
given the source image Isrc, we will compute ILDP , which
is a transformed image using Algorithm 1.

In Figure 2, an example of Local Directional Pattern
transformation of a source image Isrc(x, y) into a new im-
age ILDP (x, y) is shown.

A histogram, HLDP , can then be created from the image
ILDP (x, y). However, since each 8-bit pixel has exactly
three bits with the value 1 and 5 bits with the value 0,

Figure 1: The 8 orientations of Kirsch Masks

this allows for only 56 possibly permutations out of the
usual 256. Therefore, the histogram will only account for
these 56 possible values.

Further, it is possible to divide the image ILDP (x, y)
into blocks by splitting it a specified number of parts ver-
tically (splitV ) and horizontally (splitH) and have a 56-
value histogram for each block. The final feature vector,
FVLDP , is then obtained by concatenating all of these
histograms, FV = H1

LDP +H2
LDP + ...+HsplitV ×splitH

LDP .

Algorithm 1 Local Directional Pattern, ILDP , calcula-
tion of an image, Isrc

Require: Isrc, . Source Image
Ensure: ILDP , . Image Transformed using Lo-

cal Directional Pattern
1: for each pixel (x,y) do
2: for i=0 to 7 do
3: for k= - 1 to 1 do
4: for l = -1 to 1 do
5: mi = mi +Mi(k+1, l+1)× Isrc(x+ k, y+ l)

6: end for
7: end for
8: Transform the three highest values mi into

1s and the rest into 0s
9: end for

10: powerof2 = 1
11: ILDP (x, y) = 0
12: for i = 0 do 7
13: ILDP (x, y) = ILDP (x, y) +mi × powerof2
14: powerof2 = 2× powerof2
15: end for
16: end for

2.2 Classification

2.2.1 Euclidean distance and thresholds
One of the most common distance-based classification

techniques for determining the accuracy of biometric sys-
tems is the calculation of the Euclidean distance between
a reference vector (derived as a mean of several authentic
signatures of an individual) and other feature vectors.

Authentic signatures are expected to have Euclidean
distance values below a certain threshold while forged
signatures would have values above that threshold. Au-
thentic signatures with distances above the threshold are
regarded as false negatives and contribute to the False
Rejection Rate (FRR) while forged signatures with dis-
tances below the threshold are regarded as false positives
and contribute to the False Acceptance Rate (FAR).

The equation for determining the Euclidean distance
between vectors x = (xi)i=1,2,...,m and y = (yi)i=1,2,...,m



Figure 2: Calcualtion of the LDP code [3]

is computed as defined in equation (1).

||x− y||p = (Σm
i=1|(xi − yi)|p)1/p (1)

where p = 2.

2.2.2 Weighted Euclidean distance
The weighted Euclidean distance measure is a technique

adapted from [10] to improve the classification accuracy
by adding weight. In our case we add weight that has
statistical importance, related to the most reliable features
from the feature vector.

Given a set of of signatures S = {sig1, sig2, . . . , sign},
represented by their feature vectors spaces as

sigj = (sig1j , sig
2
j , . . . , sig

m
j )

where j = 1, 2, . . . n, and sigji is the ith component of the
jth signature, with i = 1, 2, . . .m.

We will compute the standard deviation of each com-
ponent of reference signatures as follows:

The mean µi is computed as

µi =
1

n

n∑

l=1

sigil (2)

and the standard deviation σi is defined as

σi =

√√√√ 1

n

n∑

l=1

(siglj − µj)2 (3)

The weighted Euclidean distance between two signature
x = (xi)i=1,2,...,m and y = (yi)i=1,2,...,m can then be cal-
culated using the standard deviation as shown in Equation
4

||x− y||p =

(
m∑

j=1

|(xj − yj)|p
σj

)1/p

(4)

where p = 2.

2.2.3 Fractional distances
A drawback of using Euclidean and other p-norm dis-

tances where p ∈ N1 is that as the vectors get larger, the
distance values tend to cluster[2]. This is called the con-
centration phenomenon. To overcome this limitation of
distance-based distance classification, Vivaracho-Pascual
et. al. [12] introduced the use of fractional p-norm dis-
tances.

The equation for determining fractional p-norm distance
between vectors x and y is computed as defined in equa-
tion (1) where 0.1 ≤ p ≤ 2.0.

2.2.4 Weighted fractional distances
The fractional distances and weighted Euclidean dis-

tance can then be combined to form the weighted frac-
tional distance as defined in equation (4) where 0.1 ≤ p ≤
2.0. The optimal value of p is calculated experimentally
for each user.

3. RESULTS AND DISCUSSION

3.1 Data Set
The Grupo de Procesado Digital de Senales (GPDS) sig-

nature database is used in the analysis of the techniques.
The database consists of authentic and forged signature
sets for 300 different individuals. There are 24 authentic
signatures and 30 skilled forgeries per each individual. All
signatures are stored in black and white.

10 authentic signatures are used to create the reference
signature, the other 14 authentic signatures and the 30
skilled forgeries are used for the classification and verifi-
cation. For testing random forgeries with each individual,
a single authentic signature from each of the other 299
individuals is used.

3.2 Thresholding
Quantification of result accuracy is measured in terms

of the False Rejection Rate (FRR); False Acceptance Rate
(FAR) which is further broken down into FAR for skilled
forgeries (FARS) and FAR for random forgeries (FARR);
and the Equal Error Rate (ERR), which is the point at
which the FRR and FARS are equal.

The reference feature vector is created by calculating
the mean of each feature in the feature vectors of 10 au-
thentic signatures. The distance between the reference
feature vector and each of the remaining 14 authentic sig-
natures is determined using one of the Euclidean, frac-
tional, weighted Euclidean or weighted fractional distance
equations. A threshold distance value is determined. All
distances below the threshold are regarded as authentic,
while all distances about are regarded as forgeries. The
FRR is calculated from this. Likewise, the FARS and
FARR are obtained from the distance calculated between
the reference feature vector and the skilled and random
forged signatures respectively.

The optimal threshold distance value is determined lo-
cally for each individual as the value that produces the
EER. This is the threshold where the FRR and FARS are
equal. In Fig. 3, this is represented as the convergence
point of the FRR and FARS on the ROC curve. The
FARR is then determined using this threshold value.

3.3 Results
Tests are performed using the distance-based classifica-

tion techniques. These techniques are the Euclidean, frac-
tional, weighted Euclidean and weighted fractional dis-
tances. For each classification technique, multiple vertical
(splitV ) and horizontal (splitH) split sizes are tested. The
number of splits are in the range of 1, i.e. no splits, to
8, providing a total of 49 different combinations of splits
which were applied globally to all individuals. This is
done to find the best possible global feature vector size
per classification technique and investigate the effect of
the weighted distances and fractional distances on the con-
centration phenomenon. The feature vector size is deter-
mined by splitH × splitV × H where H is the length of
the histogram, which is always 56 in the LDP extraction
technique. For the best classification technique with the



Table 1: The effect of different splitH and splitV on
EER(%) using the Euclidean distance
HHHHHH

V
1 2 3 4 5 6 7

1 25.0 23.9 22.6 23.0 22.6 22.8 23.0

2 23.8 22.3 21.7 22.0 22.0 22.3 22.4

3 24.0 22.7 21.9 21.9 22.2 22.3 22.6

4 24.1 23.0 22.5 22.5 22.8 23.0 23.1

5 24.3 23.7 23.1 23.2 23.5 23.6 23.9

6 24.8 24.0 23.4 23.7 24.0 24.2 24.5

7 25.2 24.4 24.2 24.1 24.5 25.0 25.3

Table 2: The effect of different splitH and splitV on
EER(%) using fractional distances
HHHHHH

V
1 2 3 4 5 6 7

1 18.9 17.7 17.0 16.9 16.7 16.6 16.6

2 18.0 16.8 16.2 16.1 16.1 15.9 16.0

3 17.5 16.5 15.6 15.7 15.4 15.2 15.2

4 17.5 16.2 15.9 15.6 15.4 15.3 15.3

5 17.5 16.3 15.3 15.4 15.3 15.2 15.0

6 17.7 16.1 15.7 15.4 15.2 15.0 14.9

7 17.4 16.2 15.4 15.3 15.0 14.8 14.7

Table 3: The effect of different splitH and splitV on
EER(%) using the weighted Euclidean distance
HHHHHH

V
1 2 3 4 5 6 7

1 18.6 17.9 16.8 16.5 16.1 16.0 16.0

2 18.4 16.5 15.8 15.7 15.4 15.3 15.2

3 17.3 16.0 15.5 15.3 14.6 14.8 14.6

4 17.4 15.7 15.2 15.1 14.5 14.8 14.8

5 17.3 15.6 14.7 14.8 14.6 14.6 14.7

6 17.0 15.7 14.8 15.0 14.7 14.8 14.7

7 16.9 15.5 14.8 14.9 15.0 14.7 15.0

Table 4: The effect of different splitH and splitV on
EER(%)using weighted fractional distances
HHHHHH

V
1 2 3 4 5 6 7

1 16.8 16.1 15.1 14.8 14.5 14.4 14.2

2 16.7 14.1 14.2 14.0 13.7 13.4 13.3

3 15.7 14.3 13.6 13.2 12.7 12.6 12.5

4 15.8 14.0 13.3 13.0 12.5 12.7 12.4

5 15.3 14.1 12.8 12.7 12.5 12.3 12.3

6 15.1 13.9 12.9 12.7 12.6 12.5 12.3

7 15.0 13.8 12.9 12.7 12.5 12.3 12.2

lowest EER, the FARR is also shown.
The first analysis is performed with the Euclidean dis-

tance and the results are shown in Table 1. The worst

Table 5: The effect of different splitH and splitV on
FARR(%)using weighted fractional distances
HHHHHH

V
1 2 3 4 5 6 7

1 1.08 0.70 0.47 0.43 0.52 0.57 0.57

2 0.65 0.48 0.54 0.84 0.81 0.93 1.22

3 0.54 0.42 0.66 0.75 0.75 0.81 1.09

4 0.56 0.53 0.23 0.91 1.00 1.11 1.14

5 0.63 0.79 1.00 1.02 1.20 1.28 1.28

6 0.68 0.76 1.16 1.08 1.34 1.36 1.45

7 0.68 0.88 1.18 1.36 1.44 1.63 1.64

EER when using the Euclidean distance was found to oc-
cur with the largest feature vector size, i.e. 7 vertical ×
7 horizontal splits. This EER was 25.3%. Conversely, the
best EER occured with one of the smallest feature vec-
tor sizes, i.e. 3 × 2 splits. This EER was 21.66%. The
accuracy trend with standard Euclidean distance measur-
ing was that the EER was poor for the smallest feature
vectors, it then improved as the feature vectors became
larger and more detailed, but then worsened once the fea-
ture vectors became too large. This reduction in accu-
racy confirms that the concentration phenomenon occurs
with large feature vectors because the Euclidean distance
causes the distance values to cluster. The weighted Eu-
clidean distance and fractional distance discussed below
are used to counter this phenomenon.

The second analysis is performed with the fractional
distance and the results are shown in Table 2. The clas-
sification technique produced a higher accuracy in com-
parison with the Euclidean distance. The worst EER oc-
curred with the smallest feature vector, i.e. 18.9% with
1 × 1 splits. This worst EER is still better than the best
EER of the Euclidean distance, which was 21.7%. As the
feature vectors increase in size, the accuracy of this clas-
sification technique gradually improves. The best EER
was achieved with the largest feature vector, i.e. 14.7%
with 7× 7 splits. This shows that the fractional distances
overcome the concentration phenomenon that adversely
affects larger feature vectors when the Euclidean distance
is applied. The best EER of the fractional distance is
better than the best Euclidean distance EER by almost
7%. Larger feature vectors were tested, but have been ex-
cluded due to subsequent decreasing accuracies and lack
of space.

The third analysis is performed with the weighted Eu-
clidean distance and the results are shown in Table 3. This
classification technique also produced a higher accuracy
in comparison to the Euclidean distance and while also
producing a slightly higher accuracy than the fractional
distance. Once again, the worst EER occurred with the
smallest feature vector, i.e. 18.6% with 1 × 1 splits. The
best EER occurred among one of the largest feature vec-
tors, i.e. 14.5% with 5 × 4 splits. This is better than
both the Euclidean and fractional distances. While the
weighted Euclidean distance does not counter the concen-
tration phenomenon completely, it is effective enough to
produce a good accuracy.

The fourth and final analysis is performed with the
weighted fractional distance, which is a combination of
the weighted and fractional distance techniques. The re-
sults are shown in Table 4. This combined technique



Figure 3: Calculation of EER on applying the
weighted fractional distances with 7x7 splitting

provides the best accuracy from all four of the compared
techniques.Just like with the fractional and weighted Eu-
clidean distances, the worst EER occurred with the small-
est feature vector, i.e. 16.8% with 1 × 1 splits. Just like
with the fractional distance, the best EER was obtained
with the largest feature vector, i.e. 12.2% with 7×7 splits.
This EER is the best from all the compared techniques. It
provides a 9.5% increase in accuracy in comparison with
the best Euclidean distance EER. The FARR values for
the weighted fractional distance are shown in Table 5.
Conversely, it can be seen that increased feature vector
sizes cause the undesired effect of an increase in the FARR.

The greatest accuracy was achieved by a combination of
weighted and fractional distances with an EER of 12.2%.
This is more accurate by almost 10% in comparison to the
best standard Euclidean distance measure.

3.4 Literature Comparison
The results in this paper are compared to those of Fer-

rer et. al. [3], who used the same feature extraction tech-
nique, the Local Directional Pattern; and the same signa-
ture database, GPDS300. However, they used a different
classification technique, namely, Support Vector Machines
(SVM) with a Radial Basis Function (RBF) kernel. By
using these techniques, they obtained an EER of 17.8%
and FARR of 0.68%. In comparison, we obtained a best
EER of 12.2% with an FARR of 1.64% by using weighted
fractional distance classification instead.

While both systems obtained an FARR of below 2%, the
better FARR was obtained by Ferrer et. al. This can be
attributed to the use of random forgeries in the training
of their classifier, which was not performed in our system.

While further tests need to be performed, especially
with regards to the training set used, and different feature
extractions from literature, the results are promising.

4. CONCLUSION
An alternative efficient handwritten signature classifi-

cation technique has been presented. The proposed tech-
nique uses a combination of multiple distance-based clas-
sification techniques: weighted Euclidean distance, frac-
tional distance and weighted fractional distance, to ver-
ify the Local Directional Pattern-based signature features.
Experimental results show that the proposed approach ob-
tains an Equal Error Rate (EER) of 12.2% on skilled forg-
eries. This is comparable to literature results where super-
vised learning techniques were applied to the same feature
extraction techniques, which obtained an EER of 17.8%.

Therefore, a combination of multiple distance-based clas-
sification techniques is an alternative signature classifica-
tion technique with an accuracy rate of 87.8%.
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Offline Signature Verification using Locally Optimized

Distance-based Classification

ABSTRACT

Although handwritten signature verification has been extensively researched, it has not achieved an optimal classification

accuracy rate. Therefore, efficient and accurate signature verification techniques are required since signatures are still

widely used as a means of personal verification. This research work presents efficient distance-based classification techniques

as an alternative to supervised learning classification techniques (SLTs). The Local Directional Pattern (LDP) feature

extraction technique was used to analyze the effect of using several different distance-based classification techniques.

The classification techniques tested, are the Euclidean, Manhattan, Fractional, weighted Euclidean, weighted Manhattan,

weighted fractional distances and individually optimized resampling of feature vector sizes. The best accuracy, of 90.8%,

was achieved through applying a combination of the weighted fractional distances and locally optimized resampling

classification techniques to the Local Directional Pattern feature extraction. These results are compared with results from

literature, where the same feature extraction technique was classified with SLTs. The distance-based classification was

found to produce greater accuracy than the SLTs.

KEYWORDS: Biometrics, pattern recognition, distance-based classification

1 INTRODUCTION

Biometrics is the measure of human characteristics for
authentication or identification of individuals. Bio-
metric modalities are regularly becoming an impor-
tant aspect of automated electronic security systems.
For such a system to be successful, it requires methods
and techniques that produce high accuracy.

These systems are used either for recognition or
verification. Recognition entails the identification of a
biometric trait, or set of traits, as belonging to a spe-
cific individual from a given set of individuals. Con-
versely, verification entails authenticating a claim that
a biometric trait, or set of traits, belongs to a specific
individual.

One of the most common and widely accepted bio-
metric modality is the handwritten signature. It has
been used for verification since before the advent of
electronic machines. Due to its wide-spread use and
acceptance, handwritten signatures are an ideal can-
didate for automated biometric verification systems.
The two methods of capture for signatures are cat-
egorizes as offline and online. For offline capture, a
static image of a completed signature is recorded. For
online capture, the creation of a signature is recorded
as a function of time.

Offline signature verification systems have much
potential for world wide usage and there are several
cases in which only offline signatures can be used. This
includes automated authentication of bank cheques
and legal documents. Additionally, equipment for the
capture of offline signatures is cheaper, which will al-
low for greater adoption of automated signature verifi-
cation, especially for small-to-medium businesses and
in developing economies.

A high accuracy is required for the acceptance of
such a system, but offline signature verification sys-
tems are hindered by low accuracy rates, having not
yet reached an acceptable level of accuracy. These
low accuracy rates are due to the inherent randomness
that is characteristic of behavioural biometrics. Static
signatures also have much less information in compar-
ison to online signatures, since the time dimension is
not present.

There is much current research that attempts vari-
ous techniques to improve the accuracy of offline signa-
ture verification systems. Some of the research focuses
on novel, new feature extraction techniques. These
are designed to extract the most relevant and con-
stant features of a signature while also attempting to
reduce the extraction of features that are not stable
or constant in an individuals signatures.

Other research concentrates on using different
classification techniques and finding the optimal clas-
sification technique for a particular feature set. Clas-
sification can be categorized into supervised learn-
ing techniques (SLTs) and distance-based measures.
Most offline classification emphasizes the use of dif-
ferent SLTs, such as support vector machines, hidden
Markov models and artificial neural networks. There
is very little research into using different distance-
based classification techniques, except for the Eu-
clidean distance, which is the most commonly known
distance measure in geometric space.

There are many other distance-based measures
that could be used for classification. This work im-
prove the accuracy of offline signature verification sys-
tems by investigating the use of some of these tech-
niques, specifically weighted and fractional distances
in LP -space, and applies them to various different fea-
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ture extraction techniques. The results obtained are
compared with those from literature. In particular,
the distance-based classification techniques are com-
pared with SLTs with the use of the same feature ex-
traction techniques.

1.1 Literature Survey

Many techniques exist for the classification of signa-
tures and other biometrics. They can be broadly cat-
egorized into supervised learning techniques (SLTs)
and distance-based classification techniques. SLTs in-
clude neural networks, hidden Markov models (HMM)
[1], support vector machines (SVM) [2] and fuzzy
logic. Linear techniques include Euclidean dis-
tance, Mahalanobis, Manhattan distance, weighted
Euclidean distances [3] and fractional distances [4].
Some of the notable, recent works are discussed be-
low.

Kovari et al. [5] uses artificial neural networks for
classifying a feature vector comprised of both local
and global features, and achieves an EER of just over
20%. Coetzer et al. [6] applies HMM classification to
discrete Radon transform, which is a global feature,
and achieved an EER of 12.2% using skilled forgeries
and 4.5% using random forgeries. Panton and Coetzer
further improves the EER to 8.6% by using a fusion
of HMM classifiers and adding local features to the
feature vector [7]. Yilmaz et al. [8] performs SVM
classification on a combination of gradient-based and
binary pattern-based features. It is found that user-
dependent, also called user-specific, classifier worked
better than a globally applied classifier for all users.
Thy achieved a best AER of 15.41%. Vargas et al. [9]
proposes a system with least squares SVM classifica-
tion on features extracted from the Fourier transform
of a signature image. An EER of 6.20% is obtained,
which, by literature comparison, performs better than
similar techniques, using the same database. Batista
et al. [10] uses the statistical fusion of HMM classi-
fiers via a multi-hypothesis approach and user specific
codebooks. An AER of 7.79% is acheived. The best
recent results for SLTs is by using multi-hypothesis fu-
sion approaches. Ferrer et al. [11] performs a compar-
ison between the Euclidean distance, HMM and SVM,
using geometric features based on Cartesian and polar
coordinates. It is found that, for the feature extrac-
tions used, the best performance was for HMM, with
and FRR of 14.1% and FAR of 12.3%, using skilled
forgeries. The SVM performed better than the Eu-
clidean distance, but worse than the HMM. Kisku et
al. [12] develops another multi-hypothesis approach
where Euclidean distance, Mahalanobis distance and
Gaussian empirical rule results are fused together us-
ing SVM. A private signature database, comprising of
9 authentic signatures and a single forged signature
were collected for each of 180 individuals. Individu-
ally, each classification technique performs very well
with EER values below 10%, and combined, a best
EER of 2.15% is achieved. While multi-hypothesis
techniques can greatly improve accuracy, they also re-
quire much more processing for training and testing,

since multiple classifiers are used in place of a single
classifier.

The Mahalanobis distance was first documented
in 1936 by Prasanta Mahalanobis [13]. It performs
best with multivariate normal data distributions [14].
Fang et al. [15] reports one of the earliest classifica-
tions using the Mahalanobis distance. A best EER
of 19.1% was achieved. Nguyen et al. [16] also com-
pares squared Mahalanobis distance and Gaussian ker-
nel SVM classification on a local gradient-based fea-
ture extraction. The AER for the SVM is 15.02%.
The gradient distance with SVM classification per-
forms better than the squared Mahalanobis distance,
and better than their previous tests with MDF fea-
ture extraction and SVM classification. Sigari et al.
[17] performs Mahalanobis distance classification on
features extracted using Gabor wavelets. Verification
tests are performed on 3 relatively small, yet diverse,
signature databases. EER values of 15.0%, 16.8% and
9.0% were obtained. The Mahalanobis distance per-
forms best with multivariate normal data distributions
[14]. This limits its applicability to feature extraction
techniques.

The most well known distance-based measure is
the Euclidean distance. There are many works that
have used the Euclidean distance for authentication
due to it’s simplicity of implementation. Shekar et al.
[18] uses the Euclidean distance for the verification
of feature vectors created using an Eigenvector-based
feature extraction technique. Different sizes of fea-
ture vectors were tested, and a single globally applied
feature vector size was eventually chosen. An EER
of 14.33% is achieved when using 10 signatures for
training and 14 for testing. A better EER of 8.78%
is achieved when using 15 signatures for training and
9 for testing, but it is noted that in compared works,
the former configuration of training and testing sam-
ples were used. Rekik et al. [19] also tests global
and local feature extractions with Euclidean classifi-
cation. A fusion of local and global features is found
to perform better than using local or global features
independently. The best EER with skilled forgeries is
11.0% using signatures from 75 different individuals.
Ramachandra et al. [20] finds the smallest Euclidean
distance between cross-validated graphs of signatures,
using the Hungarian method [21]. Various feature vec-
tor sizes are tested and an EER of 27.78% is achieved
using skilled forgeries and 6.25% using random forg-
eries for two different vector sizes. The Euclidean dis-
tance accuracy is limited by the concentration of dis-
tances of large feature vectors.

The weighted Euclidean distance is not a com-
monly used classification technique. Zhu et al. [3] uses
the weighted Euclidean distance for iris recognition in
2000. Alizadeh et al. [22] uses the weighted Euclidean
distance for online signature verification. This is a
promising technique that can improve the accuracy of
distance-based classification.

Fractional distances are another uncommon, yet
promising, classification technique. They have not
been used in offline signature verification before. How-
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ever, they have been used for online signature recog-
nition in Vivaracho-Pascual et al. [4], and for face
recognition in Espinosa-Dur et al. [23].

In this work, the concept of weighting by standard
deviation is applied to the fractional distance to pro-
duce a novel distance-based classification technique,
called the weighted fractional distance. Additionally,
locally optimized thresholding is optimized by choos-
ing the optimal feature vector length per individual.

2 TECHNIQUES AND METHODOLOGY

2.1 Design Overview

Figure 1: Overview of the design of a biometric verification

system

Figure 1 shows the overview of the verification
system. The three main steps are preprocessing, fea-
ture extraction and classification. Preprocessing pre-
pares the signature image for the extraction of fea-
tures which are then used to classify the signature as
authentic or forged. For feature extraction, the Local
Directional Pattern (LDP) features are used. Before
feature extraction, the required preprocessing steps
are binarization, dilation and bounding box extrac-
tion. For classification, distance-based classification
techniques, such as the Euclidean, Manhattan and
fractional distances are tested.

In the training phase, the reference feature vector
is determined by averaging a subset of randomly cho-
sen authentic feature vectors. Sample feature vectors
are obtained form other authentic and forged signa-
tures individually. The classifier is then trained to
determine the threshold that provides the optimal ac-

curacy for the system, using sample feature vectors of
known classification as input. In the testing phase,
further sample signatures are used, but the classifier
will determine their classification independently based
on the threshold obtained from the training phase.
Accuracy is gauged based on the number of signatures
that the classifier correctly accepts as authentic and
correctly rejects as forgeries.

2.2 Feature Extraction

2.3 Local Directional Pattern

The Local Directional Pattern (LDP) [24] [25] is a
gray-scale texture based feature method that charac-
terizes the spatial structure of an image. It utilizes
the 8 orientations of Kirsch masks, as shown in Fig-
ure 2, to detect the presence of edges or corners and
their orientations. Values of the 8 mask orientations,
m0, m1, . . . , m7, are obtained by performing a convo-
lution of Kirsch masks with the image at each pixel,
followed by a binarization. In other words, given the
source image Isrc, we will compute ILDP , which is a
transformed image using Algorithm 1.

Algorithm 1 Local Directional Pattern, ILDP , cal-
culation of an image, Isrc
Require: Isrc, . Source Image
Ensure: ILDP , . Image Transformed using

Local Directional Pattern
1: for each pixel (x,y) do
2: for i=0 to 7 do
3: for k= - 1 to 1 do
4: for l = -1 to 1 do
5: mi = mi +Mi(k+1, l+1)×Isrc(x+k, y+ l)

6: end for
7: end for
8: Transform the three highest values mi

into 1s and the rest into 0s
9: end for

10: powerof2 = 1
11: ILDP (x, y) = 0
12: for i = 0 do 7
13: ILDP (x, y) = ILDP (x, y) +mi × powerof2
14: powerof2 = 2× powerof2
15: end for
16: end for

In Figure 3, an example of Local Directional Pat-
tern transformation of a source image Isrc(x, y) into a
new image ILDP (x, y) is shown.

A histogram, HLDP , can then be created from the
image ILDP (x, y). However, since each 8-bit pixel has
exactly three bits with the value 1 and 5 bits with the
value 0, this allows for only 56 possibly permutations
out of the usual 256. Therefore, the histogram will
only account for these 56 possible values. A sample
histogram derived from a signature image is shown in
Figure 4.
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Figure 2: The 8 orientations of Kirsch Masks [25]. Each

orientation is applied to a pixel and its 8 neighbours to

calculate 8 mask values.

Figure 3: calculation of the LDP code [25] obtained by

applying each of the 8 Kirsch masks

2.4 Feature Vectors and Resampling

Further, it is possible to divide the image ILDP (x, y)
into blocks by splitting it a specified number of parts
vertically (splitV ) and horizontally (splitH) and have
a 56-value histogram for each block. The final feature
vector, FVLDP , is then obtained by concatenating all
of these histograms, FV = H1

LDP + H2
LDP + ... +

HsplitV ×splitH
LDP . A sample signature after binarization,

dilation, cropping and splitting is shown in Figure 5.
In this work, multiple feature vector sizes are an-

alyzed so as to understand the effect of resampling on
the LDP. Feature vectors for between 1 and 8 vertical
splits, splitV , and horizontal splits, splitH , are tested.
Since each histogram has a size of 56 and they are
concatenated, the feature vector size for LDP feature
extraction is calculated as

FVLDP = 56× splitV × splitH (1)

Resampling will be discussed further in the Sec-
tion 2.5.6 which discusses Individual Optimized Re-
sampling.

2.5 Classification

2.5.1 Determining the Threshold

Authentic signatures are expected to have distance
values below a certain threshold while forged signa-
tures would have values above that threshold. This
threshold is determined by finding the optimal Equal
Error Rate (EER) during the training phase. Authen-
tic signatures with distances above the threshold are

Figure 4: A sample LDP histogram showing the occur-

rences of each directional permutation from the image in

Figure 5 with no splits

Figure 5: A dilated image with splits segmented by 3 hor-

izontal splits and 4 vertical splits

regarded as false negatives and contribute to the False
Rejection Rate (FRR) while forged signatures with
distances below the threshold are regarded as false
positives and contribute to the False Acceptance Rate
(FAR). This is further split into the FAR for skilled
forgeries (FARS) and for random forgeries (FARR).
The threshold is chosen where the distance for the
FRR and FARS are equal. This rate is also called the
Equal Error Rate (ERR).

2.5.2 Euclidean Distance

One of the most common distance-based classification
techniques for determining the accuracy of biometric
systems is the calculation of the Euclidean distance
between a reference vector (derived as a mean of sev-
eral authentic signatures of an individual) and other
feature vectors. The Euclidean distance is used to
calculate the distance between points in a Cartesian
plane. It is a distance calculated in LP -space, also
called Lebesgue space, where the p-norm value is 2, or
the L2 distance.

The equation for determining the Euclidean dis-
tance between vectors x = (xi)i=1,2,...,m and y =
(yi)i=1,2,...,m is defined as

||x− y||p = (
m∑

i=1

|(xi − yi)|p)1/p (2)

where p = 2. This makes the equation
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||x− y||2 = (
m∑

i=1

|(xi − yi)|2)1/2 (3)

2.5.3 Manhattan Distance

The Manhattan distance, also called the City-block
distance, is the distance between two points deter-
mined as the sum of the absolute difference of their
respective coordinates. The equation for determin-
ing the Manhattan distance between vectors x =
(xi)i=1,2,...,m and y = (yi)i=1,2,...,m is computed as
defined in Equation (2) where p = 1. Therefore, Equa-
tion (2) can be re-written as

||x− y||1 =
m∑

i=1

|(xi − yi)| (4)

2.5.4 Fractional Distance

The fractional distance is another distance in LP -
space where the p-norm value, also called the Mi-
nowski norm exponent, is any fractional value less
than 1. Francois and Wertz [26] discusses the use of
fractional distance as an alternative to the Euclidean
distance to counteract the concentration phenomenon.
This phenomenon is when large feature vectors cause
the results of the Euclidean distance to concentrate, or
cluster. This clustering of values, which is an intrinsic
property of LP -space distances, makes classification
difficult for large feature vectors. Fractional distances
generally produce less concentrated results than the
Euclidean distance, which allows for better classifica-
tion of data sets.

Francois et al. states “Fractional norms are not al-
ways less concentrated than other norms. They seem,
however, to be more relevant as a measure of sim-
ilarity when the noise affecting the data is strongly
non-Gaussian.” [26] Much of the noise generated by
behavioral biometrics is due to random variations in
human action, that may not follow a normal distribu-
tion. This makes fractional distances a viable inves-
tigative route of classifying offline handwritten signa-
tures.

The equation for determining fractional p-norm
distance between vectors x and y is computed as

min(||x− y||p) = (Σ|(x− y)|p)1/p (5)

where 0.1 ≤ p ≤ 2.0.
The optimal value of p is when the distance cal-

culated using Equation (5) is at its minimum for all
values of p within the given range.

2.5.5 Weighted Distances in LP -space

The weighted Euclidean distance measure is a tech-
nique adapted from [3] to improve the classification
accuracy by adding weight, or statistical importance,
to the most reliable features from the feature vector.
Firstly, the standard deviation for the reference signa-
tures is obtained.

Let the n reference signatures be

x1 = (x11, x
2
1, . . . , x

m
1 )

x2 = (x12, x
2
2, . . . , x

m
2 )

...

xn = (x1n, x
2
n, . . . , x

m
n )

(6)

Let xji be the jth component of the ith reference
signature where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Then the mean of the jth component the reference
signatures, µj , is computed as

µj =
1

n

i<n∑

i=0

xji (7)

and their standard deviation σj is defined as

σj =

√√√√ 1

n

i<n∑

i=0

(xji − µj)2 (8)

The weighted Euclidean distance is then calcu-
lated using the standard deviation

||x− y||p =




j<m∑

j=0

|(xj − yj)|p
σj




1/p

(9)

where p = 2.
The equation can be rewritten as

||x− y||2 =




j<m∑

j=0

|(xj − yj)|2
σj




1/2

(10)

Further, the Manhattan distance and weighted
Euclidean distance are combined to form the weighted
Manhattan distance

min(||x− y||1) =

j<m∑

j=0

|(xj − yj)|
σj

(11)

The fractional distances and weighted Euclidean
distance are also combined to form the weighted frac-
tional distance

min(||x− y||p) =




j<m∑

j=0

|(xj − yj)|p
σj




1/p

(12)

where 0.1 ≤ p ≤ 2.0
As with Equation 5, the optimal value of p is when

the distance calculated using Equation 12 is at its min-
imum for all values of p within the given range.

2.5.6 Individually Optimized Resampling

Resampling of the feature vector allows it to be re-
sized. This is a form of spatial normalization. Dif-
ferent resampling sizes results in changing accuracies.
It is expected that choosing the best resampling size
per user will optimize the overall accuracy of the sys-
tem. When a feature vector is resampled, its size is
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normalized to produce a uniform feature vector size,
either globally for all signature sets or locally per in-
dividual set. Vivaracho-Pascual et. al. [4] try several
resampling sizes for their feature vectors, in research
with online signatures. They note that there is no sin-
gle resampling size that is optimal for all signatures.
They further state that local optimization, obtained
by choosing the best feature vector size per individ-
ual, is a non-trivial approach and interesting for future
study. However, for their work, they chose a global re-
sampling size for all individuals.

The resampling method used for LDP is described
in Sections 2.3 and 2.4. In the works of Ferrer et. al.
[25], the signatures are split into 4 blocks vertically
and 3 blocks horizontally, giving a total of 12 blocks.
It is unclear if other split combinations were tested.
In their work, each block overlapped by 60% and fea-
ture vectors were transformed using the discrete cosine
transform before classification with a support vector
machine. In this work, images are tested with block
splits between 1 and 8 in both the vertical and horizon-
tal directions. This provides block numbers between
1 and 64 blocks per image.

3 RESULTS AND DISCUSSION

Tables 1 to 12 show the results of tests on the LDP us-
ing different numbers of horizontal and vertical splits(
splitH and splitV respectively), with various different
classification techniques. The feature vector sizes are
determined by the splitH × splitV × H where H is
the length of the histogram, which is always 56 in the
LDP extraction technique. Splits between 1 (no split)
and 8 are tested. Further splits were omitted due to
the very large vector size’s adverse effect on processing
speed. The same experiment setup is repeated for each
of the Euclidean, Manhattan, fractional, weighted Eu-
clidean, weighted Manhattan and weighted fractional
distances.

3.1 Euclidean Distance

Table 1 shows the EER results using the Euclidean
distance calculations as defined in Equation 3. The
EER improved with increasing feature vector sizes at
first, since more data points allows better classifica-
tion. The smallest feature vector, from 1 × 1 splits,
provided a high EER of 25.0%. This signifies a poor
accuracy. As feature vector size increased, the EER
improved to a best of 21.7% at splits 2 × 3. How-
ever, due the the concentration phenomenon, which
causes distance values to cluster, the EER worsened
for feature vectors larger than this, while some of the
largest feature vectors resulted in worse accuracy that
the smallest feature vector. The worst EER of 26.0%
was obtained with the largest feature vector which had
splits of 8× 8.

A similar trend is observable with the FARR, in
Table 2, obtained using the Euclidean distance cal-
culations, with the best FARR in the same feature
vector size vicinity as the best EER, and the worst

FARR correlates with the worst EER. Once again this
can be attributed to the concentration phenomenon,
which makes the differentiation between authentic and
forged classes difficult with large feature vectors. The
distance measures discussed below are used to counter
the effects of the concentration phenomenon.

Table 1: The effect of different splitH and splitV on

EER(%) using the Euclidean distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 25.0 23.9 22.6 23.0 22.6 22.8 23.0 23.0
2 23.8 22.3 21.7 22.0 22.0 22.3 22.4 22.6
3 24.0 22.7 21.9 21.9 22.2 22.3 22.6 22.8
4 24.1 23.0 22.5 22.5 22.8 23.0 23.1 23.5
5 24.3 23.7 23.1 23.2 23.5 23.6 23.9 24.3
6 24.8 23.9 23.4 23.7 24.0 24.2 24.5 25.1
7 25.2 24.4 24.2 24.1 24.5 25.0 25.3 25.4
8 26.0 25.2 24.7 25.0 25.2 25.6 25.7 26.0

Table 2: The effect of different splitH and splitV on

FARR(%) using Euclidean distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 1.70 0.96 0.60 0.58 0.55 0.55 0.59 1.35
2 1.09 0.48 0.31 0.34 0.34 0.35 0.41 0.45
3 0.85 0.43 0.28 0.33 0.37 0.38 0.44 0.54
4 0.72 0.43 0.35 0.37 0.42 0.54 0.59 0.72
5 0.81 0.52 0.42 0.53 0.61 0.80 0.88 1.09
6 0.89 0.57 0.52 0.68 0.83 1.02 1.28 1.52
7 0.97 0.77 0.73 0.94 1.20 1.53 1.84 2.26
8 1.02 0.90 0.92 1.19 1.50 1.89 2.24 2.87

3.2 Manhattan Distance

Table 3 shows the EER results using the Manhattan
distance calculations as defined in Equation 4. The
best EER of 19.2% is with splits 3× 3, which gives a
feature vector slightly larger than with the Euclidean
distance. However, while the largest feature vectors do
not provide the best EER, they still provide a better
EER than the smallest feature vectors. This is in con-
trast to the Euclidean distance where the largest fea-
ture vectors resulted in a worse EER than the smallest
feature vectors. This shows that p-norm distance mea-
sures other than the Euclidean distance can provide a
better result when feature vectors are larger and in-
formation is greater.

The FARR, in Table 4 shows a similar trend,
where the best FARR of 0.18% is also with splits of
3 × 3. While the FARR increase for larger feature
vector sizes, it is still better than for the smallest fea-
ture vector. This further advocates the use of p-norm
distances other than the Euclidean distance.

The fractional distances discussed next are used to
counter the concentration phenomenon even further .
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Table 3: The effect of different splitH and splitV on

EER(%) using the Manhattan distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 23.3 21.6 20.4 20.3 20.2 20.1 20.2 20.2
2 21.7 20.2 19.3 19.7 19.4 19.7 19.8 20.0
3 21.5 20.0 19.2 19.4 19.3 19.4 19.5 19.7
4 21.4 19.9 19.6 19.5 19.8 19.5 19.6 20.1
5 21.6 20.2 19.6 19.8 19.9 20.1 20.1 20.3
6 21.5 20.6 20.0 20.3 20.2 20.4 20.6 20.8
7 21.9 20.6 19.8 20.1 20.5 20.5 20.8 21.0
8 22.0 21.0 20.2 20.5 20.7 20.9 20.9 21.2

Table 4: The effect of different splitH and splitV on

FARR(%) using Manhattan distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 1.39 0.77 0.46 0.43 0.39 0.43 0.37 0.89
2 0.79 0.34 0.24 0.24 0.23 0.23 0.28 0.30
3 0.54 0.22 0.18 0.20 0.23 0.24 0.29 0.32
4 0.45 0.22 0.22 0.23 0.26 0.32 0.36 0.44
5 0.47 0.25 0.24 0.27 0.37 0.45 0.54 0.60
6 0.45 0.25 0.30 0.34 0.44 0.55 0.64 0.79
7 0.47 0.30 0.31 0.43 0.55 0.71 0.93 1.08
8 0.50 0.35 0.38 0.50 0.67 0.87 1.10 1.33

3.3 Fractional Distance

Figure 6 shows the effect of globally applied fractional
distances on small and large feature vectors. The
small feature vector was obtained from images with no
split (1 block), while the large feature vector was ob-
tained from images with 7×7 splits (49 blocks). While
fractional distances provide an improvement over the
Euclidean distance with the small feature vector, the
effect is much more pronounced with the large feature
vector. With the small feature vector, the best EER
was obtained with p = 0.4. This correlates with the
observation of Vivaracho-Pascual et. al. [4] Accuracy
then sharply decreases and p = 0.1 gives a worse EER
than the Euclidean distance. Conversely, when the
feature vector is very large, the Euclidean distance
provides a slightly worse EER in comparison to the
small feature vector, but the EER greatly increases
when p < 2.0. The best EER was found to then be
with p = 0.1, which is 5.8% better than the best glob-
ally applied fractional distance for the smaller feature
vector. This discrepancy with Vivaracho-Pascual et.
al. is most likely due to their use of insufficiently large
feature vectors. Additionally, the best EER for the
fractional distance with the large feature vector was
8.8% better than the associated Euclidean distance
and 11.2% better than the worse fractional distance
with the small feature vector. This proves that the
fractional distances do counter the concentration ef-
fect that occurs especially with large feature vectors.

The fractional distances were then applied with lo-
cal optimization. Table 5 shows the EER results using
the locally optimized fractional distance calculations
as defined in Equation 5. This means that the best

Figure 6: EER in Relation to individual fractional dis-

tances for large and small feature vector sizes

Table 5: The effect of different splitH and splitV on

EER(%) using the fractional distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 18.9 17.7 17.0 16.9 16.7 16.6 16.6 16.7
2 17.9 15.0 16.2 16.1 16.1 15.9 16.0 16.0
3 17.5 16.4 15.6 15.7 15.4 15.2 15.2 15.5
4 17.5 16.2 15.9 15.6 15.4 15.3 15.3 15.2
5 17.5 16.3 15.3 15.4 15.3 15.2 15.0 15.2
6 17.7 16.1 15.7 15.4 15.2 15.0 14.9 14.9
7 17.4 16.2 15.4 15.3 15.0 14.8 14.7 14.7
8 17.7 16.5 15.5 15.3 15.3 14.8 14.7 14.7

fractional distance within the range 0.1 ≤ p ≤ 2.0 was
chosen per individual, since some fractional distances
work better than others for different individuals. The
best EER of 14.7% is with one of the largest feature
vectors, 7 × 8. This is smaller than the smallest fea-
ture vector using fractional distances by 4.2% and it is
better than the best Euclidean distance by 7.0%. This
further shows that the fractional distances provide a
solution to the concentration phenomenon that occurs
with the Euclidean distance. There is a trend of im-
provement as feature vectors become larger. The frac-
tional distances appears to reach their best improve-
ment in overcoming the concentration phenomenon
between splits 7 × 7 and 8 × 8, which correlates with
feature vector sizes between 2744 features and 3584
features. There is also an improvement over globally
applied fractional distance, by 1.8%.

The FARR, in Table 6 shows a slightly differ-
ent trend, where the best FARR does not correlate
with the best EER. This is most likely due to choos-
ing the best p-norm value locally for each individual,
rather than a globally used p-norm as in the case of
the Euclidean and Mahattan distances. Due to this
localized optimization of the fractional distances, in
some cases, larger p-norm values were used for the
best EER, resulting in worsening of the concentration
phenomenon for larger feature vectors. However, the
FARR for fractional distances is still better than that
for Euclidean and Manhattan distances, especially in
the case of larger feature vectors.



8 Research Article — SACJ, Submission, 2012

Table 6: The effect of different splitH and splitV on

FARR(%) using fractional distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 1.59 0.95 0.53 0.50 0.50 0.48 0.45 0.52
2 1.02 0.48 0.40 0.37 0.38 0.44 0.51 0.52
3 0.70 0.33 0.32 0.30 0.35 0.32 0.42 0.43
4 0.57 0.31 0.37 0.39 0.34 0.40 0.45 0.51
5 0.59 0.34 0.39 0.31 0.45 0.47 0.54 0.57
6 0.54 0.36 0.44 0.44 0.45 0.51 0.54 0.73
7 0.52 0.42 0.41 0.47 0.51 0.66 0.77 0.78
8 0.53 0.54 0.50 0.51 0.60 0.70 0.76 0.89

3.4 Weighted Euclidean Distance

Table 7 shows the EER results using the weighted Eu-
clidean distance calculations as defined in Equation
10. The best EER of 14.5% is with splits 4× 5, which
gives a feature vector larger than with the best un-
weighted Euclidean or Manhattan distance. This is
of a better EER than the Euclidean and Manhattan
distances, and of an almost equal EER in compar-
ison with the fractional distance. The low EER is
due to extra weight, or importance, being given to
the most reliable features in the feature vector, which
have the smallest intra-class difference per individual.
This weighting also counteracts the clustering of the
concentration phenomenon to a small extent. This is
emphasized further by the largest feature vectors hav-
ing a lower EER than the smallest feature vectors.

In contrast, the FARR in Table 8 shows a differ-
ent trend, where the FARR worsens as the feature
vectors become larger. This is because the weighting
can not always differentiate between different sets of
signatures and some features in random forgeries may
be given extra weight if they are similar to authentic
signatures. This is particularly visible with the largest
feature vectors which will also experience the effects
of the concentration phenomenon as well.

Table 7: The effect of different splitH and splitV on

EER(%) using the weighted Euclidean distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 18.6 17.9 16.8 16.5 16.1 16.0 16.0 16.0
2 18.4 16.5 15.8 15.7 15.4 15.3 15.2 15.2
3 17.3 16.0 15.5 15.3 14.6 14.8 14.6 14.9
4 17.4 15.7 15.2 15.1 14.5 14.8 14.8 15.0
5 17.3 15.6 14.7 14.8 14.6 14.6 14.7 15.1
6 17.0 15.7 14.8 15.0 14.7 14.8 14.7 14.8
7 16.9 15.5 14.8 14.9 15.0 14.7 14.9 15.1
8 17.2 15.8 15.1 15.3 15.2 14.9 15.1 15.3

3.5 Weighted Manhattan Distance

Table 9 shows the EER results using the weighted
Euclidean distance calculations as defined in Equa-
tion 11. The best EER of 14.3% is with splits 7 × 7,
which gives a feature vector larger than with the best

Table 8: The effect of different splitH and splitV on

FARR(%) using weighted Euclidean distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 0.98 0.65 0.50 0.48 0.60 0.64 0.71 1.00
2 0.69 0.51 0.69 0.96 1.08 1.44 1.59 1.85
3 0.55 0.62 0.84 1.04 1.32 1.48 1.53 1.80
4 0.54 0.68 0.93 1.26 1.46 1.69 1.84 1.94
5 0.68 0.87 1.33 1.44 1.79 1.86 2.10 2.22
6 0.77 1.14 1.51 1.66 1.93 2.05 2.17 2.42
7 0.81 1.39 1.54 1.82 1.95 2.19 2.37 2.66
8 0.91 1.35 1.70 1.90 2.08 2.39 2.50 2.92

unweighted Euclidean, Manhattan and weighted Eu-
clidean distances. It is of equal size in comparison
to the fractional distance. The larger feature vector
size provided a better EER due to a combination of
a smaller p-norm distance and the weighting by stan-
dard deviation, which counteracted the concentration
phenomenon in tandem. Due to this combination, it
is also of a better EER than all of the distances tested
with the LDP before it.

The FARR, in Table 8, shows a similar trend to
the FARR of the weighted Euclidean distance, where
the FARR worsens as the feature vectors become
larger. However, due to the use of a smaller p-norm
value, the largest feature vectors have a smaller FARR
in comparison with te largest feature vector sizes of
the weighed Euclidean distance.

Table 9: The effect of different splitH and splitV on

EER(%) using the weighted Manhattan distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 19.4 18.6 17.3 17.3 17.0 16.6 16.7 16.7
2 19.3 17.2 16.6 16.3 15.9 15.6 15.5 15.6
3 18.3 16.5 15.8 15.5 15.1 15.0 14.7 14.7
4 18.1 16.2 15.4 15.3 14.8 14.8 14.5 14.7
5 18.0 16.2 15.0 14.9 14.8 14.7 14.7 14.7
6 17.7 16.1 15.1 15.1 14.9 14.6 14.5 14.7
7 17.4 16.0 15.0 15.0 14.5 14.3 14.3 14.4
8 18.0 16.3 15.2 15.1 14.7 14.6 14.5 14.6

Table 10: The effect of different splitH and splitV on

FARR(%) using weighted Manhattan distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 0.91 0.56 0.36 0.35 0.31 0.36 0.38 0.50
2 0.63 0.32 0.37 0.48 0.52 0.59 0.70 0.86
3 0.44 0.32 0.36 0.44 0.50 0.66 0.74 0.85
4 0.36 0.32 0.44 0.53 0.62 0.74 0.81 0.95
5 0.39 0.42 0.60 0.67 0.91 0.96 1.11 1.26
6 0.42 0.46 0.70 0.80 1.01 1.16 1.29 1.50
7 0.43 0.53 0.77 0.96 1.02 1.31 1.52 1.71
8 0.47 0.59 0.82 1.01 1.23 1.44 1.70 1.94
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3.6 Weighted Fractional Distance

Following the success of the weighted Manhattan dis-
tance, the weighted fractional distances, which com-
bines the weighted Euclidean distance, are tested. Ta-
ble 11 shows the EER results using the weighted frac-
tional distance calculations as defined in Equation 12.
At splits 7× 7, This provides the best EER of 12.2%
which is better than all of the classification tech-
niques tested so far. Once again, the use of fractional
distances and weighting allow greater accuracy with
larger feature vectors. By combining two techniques
that are individually better than the Euclidean dis-
tance, an overall much better accuracy was achieved.
The worst EER for the weighted fractional distance
was 16.83% using no splitting of the image. This is
nearly 5% better than the best results for the stan-
dard Euclidean distance. Conversely, the best EER
is 9.5% better than the best recorded Euclidean dis-
tance, and 2.5% and 2.7% better than the fractional
and weighted Euclidean distances respectively.

The FARR, in Table 12, shows a similar trend to
the FARR of the weighted Euclidean distance and the
weighted Manhattan distance, where the FARR wors-
ens as the feature vectors become larger. However,
due to the use of a wide range of p-norm values, the
FARR values are better than the FARR for the Eu-
clidean distance, but slightly worse than for the Man-
hattan distance.

Table 11: The effect of different splitH and splitV on

EER(%) using the weighted fractional distance
HHHHHH

V
1 2 3 4 5 6 7 8

1 16.8 16.1 15.1 14.8 14.5 14.4 14.2 14.6
2 16.7 15.0 14.2 14.0 13.7 13.4 13.3 13.4
3 15.7 14.3 13.6 13.2 12.7 12.6 12.5 12.6
4 15.8 14.0 13.3 13.0 12.5 12.7 12.4 12.5
5 15.3 14.1 12.8 12.7 12.5 12.3 12.3 12.5
6 15.1 13.9 12.9 12.7 12.6 12.5 12.3 12.4
7 15.0 13.8 12.9 12.7 12.5 12.3 12.2 12.4
8 15.4 13.9 13.0 13.0 12.6 12.5 12.5 12.6

Table 12: The effect of different splitH and splitV on

FARR(%) using weighted fractional distances
HHHHHH

V
1 2 3 4 5 6 7 8

1 1.08 0.70 0.47 0.42 0.52 0.57 0.57 0.72
2 0.65 0.48 0.54 0.84 0.81 0.93 1.22 1.55
3 0.54 0.42 0.66 0.75 0.75 0.81 1.09 1.33
4 0.56 0.53 0.23 0.91 1.00 1.11 1.14 1.34
5 0.63 0.79 1.00 1.02 1.20 1.28 1.28 1.61
6 0.68 0.76 1.16 1.08 1.34 1.36 1.45 1.67
7 0.68 0.88 1.18 1.36 1.44 1.63 1.64 1.78
8 0.66 1.04 1.21 1.42 1.53 1.84 1.84 2.11

3.7 Individually Optimized Resampling

Tables 13 to 14 show the test results for individually,
or locally, optimized resampling performed in conjunc-
tion with each of the above six discussed distance-
based classification techniques, namely, the Euclidean,
Manhattan, fractional, weighted Euclidean, weighted
Manhattan and weighted fractional distances. Opti-
mizations from 4 split and 9 split combinations were
tested. It was found that 9 splits yield better results
than 4 splits. These are symbolized in the following
tables with the [x:y] notation. For example, [1:3] rep-
resents the 9 combinations of 1× 1, 1× 2, 1× 3, 2× 1,
2× 2, 2× 3, 3× 1, 3× 2 and 3× 3.

3.7.1 Individually Optimized Euclidean Distance

Table 13 shows the results of tests with the p-norm
distances and individually optimized resampling and
the Table 14 shows those for weighted p-norm dis-
tances. The best EER for the Euclidean distance with
individually optimized resampling was 16.5% from the
[1:3] combination. The optimal combinations of fea-
ture vector sizes correlate with the lowest single Eu-
clidean distance EER, of 21.7%, from splits 2×3 when
no individual optimization was performed. The com-
bination provides a better EER than non-optimized
Euclidean and Manhattan distances. The FARR val-
ues also improved through the individually optimized
resampling. This suggests a correlation between indi-
viduals with a low EER and a low FARR.

3.7.2 Individually Optimized Manhattan Distance

The best EER for individual optimization on the Man-
hattan distance was 14.3% from the [1:3] combination.
The optimal combination of feature vector sizes corre-
late with the lowest single Manhattan distance EER,
of 19.2%, from splits 3 × 3 when no individual op-
timization was performed. The 9-combination pro-
vides an EER better than or equal to all of the non-
locally optimized distance-based measures, except for
the weighted fractional distance whose best EER is
12.2%. The FARR values also improved through the
individually optimized resampling.

3.7.3 Individually Optimized Fractional Distance

The best EER for individually optimized fractional
distances was 11.3% from the [1:3] combination and
worst was 11.8% in the [6:8] combination. The 9-
combination provides an EER better than all mea-
sures tested before it, including the the weighted frac-
tional distance whose best EER is 12.2%. The FARR
values also showed an improvement through the indi-
vidually optimized resampling.

The optimal combinations of feature vector sizes
do not correlate with the lowest single fractional dis-
tance, even though the best and worst EER are very
close, with only a 0.5% difference between them. This
discrepancy may be explained by Figure 7. In the
worse case scenario, with the combination [6:8], the
majority occurring p-norm in 0.1. This is larger than
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Split Range Euclidean Manhattan Fractional
EER FARR EER FARR EER FARR

[1:3] 16.5 0.67 14.3 0.49 11.3 0.57
[2:4] 17.1 0.31 14.9 0.21 11.7 0.31
[3:5] 17.7 0.34 15.3 0.21 11.7 0.29
[4:6] 19.0 0.55 16.3 0.30 11.8 0.36
[5:7] 20.1 0.80 17.1 0.45 11.9 0.45
[6:8] 21.4 1.36 17.8 0.69 11.8 0.62

Table 13: The effect of implementing individually optimized resampling by choosing the best EER from 9 feature vectors

for each of the p-norm distances

Split Range Weighted Euclidean Weighted Manhattan Weighted Fractional
EER FARR EER FARR EER FARR

[1:3] 11.0 0.70 11.5 0.50 9.65 0.60
[2:4] 10.8 0.72 11.8 0.34 9.66 0.49
[3:5] 10.7 1.18 11.4 0.48 9.25 0.80
[4:6] 11.1 1.59 11.6 0.68 9.50 0.97
[5:7] 11.2 1.88 11.9 1.06 9.60 1.18
[6:8] 11.8 2.20 12.0 1.27 10.0 1.36

Table 14: The effect of implementing individually optimized resampling by choosing the best EER from 9 feature vectors

for each of the weighted p-norm distances

the second highest, 0.2, occurrence by over 40%. Con-
versely, for the best case scenario of [1:3], the 5 high-
est occurring distances are all within a 10% range
of each other, and are the 5 smallest p-norm values.
This allows a higher accuracy, since sometimes, among
smaller feature vectors, different p-norm values are
better for difference individuals. However, with the
largest feature vectors, the p-norm value of 0.1 out-
performs all others. A combination of smaller feature
vectors with more variable p-norm values can there-
fore perform slightly better than a large feature vector
with a single dominant p-norm value.

Figure 7: The number of occurrences of each p-norm in the

fractional distance with individually optimized resampling

combinations [1:3] and [6:8]

3.7.4 Individually Optimized Weighted Euclidean Dis-
tance

The best EER for individually optimized weighted Eu-
clidean distance was 10.7% from the [3:5] combination.
The optimal combination of feature vector sizes corre-

late with the lowest single weighted Euclidean distance
EER, of 14.5%, from splits 4 × 5 when no individual
optimized resampling was performed. This provides
better EER than previous distance-based classifica-
tion measures. This includes better performance than
the best weighted fractional distance of 12.2% with-
out individually optimized resampling and all of the
previously tested individually optimized resamplings
of the LDP. The FARR values correlate closely with
those for the weighted Euclidean distance without in-
dividually optimized resampling.

3.7.5 Individually Optimized Weighted Manhattan Dis-
tance

The best EER for individually optimized weighted
Manhattan distance was 11.4% from the [3:5] com-
bination. The optimal combination of feature vector
sizes correlate with the lowest single weighted Man-
hattan distance EER, of 14.5%, from splits 7 × 7
when no individual optimized resampling was per-
formed. This provides better EER than previous
distance-based classification measures, where no indi-
vidually optimized resampling was performed. How-
ever, the individually optimized weighted Manhattan
distance performs worse than the individually opti-
mized weighted Euclidean distance. This may be be-
cause the standard deviation used in the weighting
equation is calculated in LP -space of 2 while the Man-
hattan distance is calculated in p-norm space of 1.
The FARR values correlate closely with those for the
weighted Manhattan distance without individually op-
timized resampling.
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3.7.6 Individually Optimized Weighted Fractional Dis-
tance

The best EER for the individually optimized weighted
fractional distance performed better than all other test
before. This good performance is due to choosing both
the best p-norm and best split size per individual,
i.e. locally optimized classification. The optimal split
sizes for the individually optimized fractional distance
do not correlate with the optimal split sizes for the
non-locally optimized weighted fractional distance, al-
though there is a mere difference of 0.75% between the
best and worst EER. An analysis of Figure 8, shows
that the pattern for the highest EER, from combina-
tion [6:8], is similar to that for the highest EER for the
individually optimized fractional distance in Figure 7.
In both cases the smallest p-norm size of 0.1 has the
greatest percentage of occurrences by far. Similarly,
the best EER, from combination [3:5], individually op-
timized fractional distance has a comparable pattern
with the best EER of [1:3] for the individually opti-
mized fractional distance. In both cases, the first 4
p-norm distances are among the largest and within a
close range. Additionally, the greatest occurrence is
still for the p-norm value of 0.1. The smaller feature
vectors in combination [1:3] provide an EER in be-
tween the highest and lowest. In Figure 8, is can be
seen that the greatest occurrence was for p-norm of 0.6
rather than 0.1. The latter provides much lower EER
values with larger feature vector sizes. The larger p-
norm of 0.6 is more effect with smaller feature vectors,
in comparison with 0.1. However, 0.1 performs much
better than 0.6 in comparison with larger feature vec-
tors.

An analysis of the weighted Euclidean, and the
individually optimized weighted Euclidean, weighted
Manhattan and weighted fractional distances shows
that all of them provide their best EER in the feature
vector range for splits 3×3 and 5×5. This suggests a
strong involvement of the standard deviation function
that is used in the weighting. In all cases, the stan-
dard deviation was calculated in p-norm space of 2,
whereas the Manhattan and fractional distances were
calculates with smaller p-norm distances.

Figure 8: The number of occurrences of each p-norm in the

weighted fractional distance with individually optimized

resampling combinations [1:3] and [6:8]

3.8 Literature Comparison

Ferrer et. al. [25] tested the Local Binary Pattern
(LBP) and Local Directional Pattern (LDP) using sev-
eral data sets, separately. These sets were 75 indi-
viduals from the MCYT database [27], and 75, 300
and 960 users from the GPDS database [28]. While
EER with the data sets using 75 individuals is low,
these results can not be used for comparison, since
the small size of the data set bring the precision and
accuracy of results into question. A better comparison
are the results obtained with the data sets containing
300 and 960 individuals. Classification was performed
with an Least Squares SVM (LS-SVM) with an RBF
kernel. The signatures were split into 12 blocks for
the feature extraction, consisting of 4 vertical splits
and 3 horizontal splits, and an overlap of 60%. From
these, the best EER was 17.8% using 300 individuals
of the GPDS database, with a corresponding FARR
of 0.68%.

In this work, the same feature extraction tech-
nique was implemented and tested with multi-
ple distance-based classification techniques, includ-
ing the Euclidean, fractional, weighted Euclidean
and weighted fractional distances. Signatures of 300
GPDS individuals were used, which was also the same
database used for the best results in [25]. A larger
range of splits sizes were tested. This range was from
1 to 8 splits in both the vertical and horizontal di-
rections. While the best Euclidean and Manhattan
distance performances for the EMDF was worse than
the literature result, at 21.7% and 19.2% respectively,
the fractional, weighted Euclidean, weighted Manhat-
tan and weighted fractional distances all performed
much better, at 14.7%, 14.5%, 14.3% and 12.2%. It
can be seen that the weighted fractional distance per-
forms better than the LS-SVM with an RBF kernel
for the classification of the LDP. Further, individually
optimized resampling was performed, where the best
resampled block sizes per individual were chosen from
a possibility of 9. The best individually optimized
resampling was for the weighted fractional distance,
with an EER of 9.25% and corresponding FARR of
0.80%. The obtained EER is better than the best
results in the literature by 8.6%, and both systems
obtained an FARR of below 1%.

4 CONCLUSION AND FUTURE WORK

To improve the accuracy of offline signature verifi-
cation, distance-based classification techniques were
tested with application to LDP feature extraction
technique.

The distances in LP -space were tested. The Man-
hattan distance and fractional distances performed
better than the Euclidean distance. The smaller p-
norm distances performed better because they are
less affected by the concentration phenomenon. The
weighted distances in LP -space also performed well.
Greater weight is given to the most stable and reli-
able features through use of standard deviation. It
also smooths out randomness from features and thus
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improves classification accuracy. By combining the
weighting and fractional distances, the weighted frac-
tional distance was created. This novel distance mea-
sure performed best.

Additionally, many different feature vector sizes
were tested. The sizes were varied through resam-
pling. Fractional distances generally work better with
larger feature vectors. Due to the uniqueness of each
individual’s signatures, the optimal feature vector size
is not the same for all individuals. Therefore, in-
dividually optimized resampling was used to chose
the optimal feature vector size per user. The best
results were obtained when the weighted fractional
distances were combined with individually optimized
resampling. This combination of multiple distance-
based classification techniques achieved accuracy rate
of 90.8%.

Classification with the fractional distances, all
weighted distances in LP -space and individually opti-
mized resampling performed better than literature re-
sults, where SLTs, namely SVMs and NNs, were used
for classification. Therefore, distance-based classifica-
tion techniques provide a viable alternative to SLTs
for the verification of offline signatures.

Future work includes testing the system with for-
eign signature databases, such as Chinese and Persian;
and fusing the signature modality with other biomet-
ric modalities to create a multi-modal biometric veri-
fication system.
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