Applications of digital holograms for the selection and detection of transverse laser modes.
Date
2014
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The transverse mode of generally available commercial lasers in most instances is not suitable
for desired applications. Shaping the laser beam either extra-cavity, that is outside the laser
resonator, or intra-cavity, which is inside the laser resonator, is required to force the laser beam
or cavity to oscillate on a selected desirable single laser mode. The shaped laser beam’s spatial
intensity profile and propagation properties would then be suitable for the desired application.
The crux of the work presented in this thesis involves intra-cavity beam shaping where we
generate desirable transverse modes from inside the laser resonator and detecting such mode
using digital holograms.
In Chapter 1 we discuss a novel technique of modal decomposition of an arbitrary optical light
field into underlying superposition of modes. We show that it can be used to extract physical
properties associated with the initial light field such as the intensity, the phase and M2, etc. We
show that this novel modal decomposition approach that requires no a priori knowledge of the
spatial scale of the modes which lead to an optimised modal expansion. We tested the new
technique by decomposing arbitrary modes of a diode-pumped solid-state laser to demonstrate
its versatility.
In Chapter 2 we experimentally demonstrate selective generation of Laguerre-Gaussian (LG)
modes of variable radial order from 0 to 5, with zero azimuthal order. To generate these
customised LG modes from within the laser resonator we show that a specialised optical
element in a form of an amplitude mask is required to be inserted inside the laser resonator. The
amplitude mask is designed and fabricated to contain absorbing rings which are immutably
connected to the desired LG mode. The geometry of the absorbing ring radii are selected to
match and coincide with the location of the selected LG mode zero intensity parts inside the
cavity. We show for the first time that the generated LG modes using this method are of high
mode purity and a gain mode volume similar to the desired LG mode. The results provide a
possible alternative route to high brightness diode pumped solid state laser sources.
In Chapter 3 we show that we can overcome the disadvantage of the specialised optical element
being immutably connected to the selection of a particular mode by experimentally
demonstrating a novel digital laser capable of generating arbitrary laser modes inside the laser
resonator. The digital laser is realised by intra-cavity replacing an end-mirror of the resonator
with a rewritable holographic mirror which is an electrically addressed reflective phase-only
spatial light modulator (SLM). We show that by calculating a new computer-generated
holographic gray-scale image on the SLM representing the desired customized laser mode
digitally, the digital laser resonator is capable of generating the desired laser modes on demand.
The results provide a new laser that can generate customized laser modes.
In Chapter 4 we show that the digital laser can be used as a test bed for conceptualizing, testing,
and proving ideas. We experimentally demonstrate this by using a simple laser cavity that
contains an opaque ring which is digitally programmed on the SLM and an adjustable circular
aperture on the output coupler mirror. We show that by manually varying the diameter of the
aperture without realignment of the laser, the generated laser modes can be tuned from a
Gaussian mode to a Flat-top mode. This opens up new digital methods that can be used to test
laser beam shaping techniques.
In Chapter 5 we outline a simple laser cavity comprising an opaque ring and a circular aperture
that is capable of producing spatially tuneable laser modes, from a Gaussian beam to a Flat-top
beam. The tuneability is achieved by varying the diameter of the aperture and thus requires no
realignment of the cavity. We demonstrate this principle using a digital laser with an intracavity
spatial light modulator, and confirm the predicted properties of the resonator
experimentally.
In Chapter 6 we discuss the techniques used to intra-cavity generate and detect LG beams with a
non-zero azimuthal index since they are known to carry orbital angular momentum (OAM), and
have been routinely created external to laser cavities. We show that the few reports of obtaining
such beams from laser cavities suffer from inconclusive evidence of the real electromagnetic
field. In this Chapter we revisit this question and show that an observed doughnut beam from a
laser cavity may not be a pure Laguerre–Gaussian azimuthal mode but can be an incoherent sum
of petal modes, which do not carry OAM. We point out the requirements for future analysis of
such fields from laser resonators.
In Chapter 7 we conclude and discuss future work.
Description
Ph. D. University of KwaZulu-Natal, Durban 2014.
Keywords
Gaussian beams., Laser beams., Lasers -- Resonators., Theses -- Physics.