Repository logo
 

Some invetsigations on the responses to desiccation and exposure to cryogenic temperatures of embryonic axes of Landolphia kirkii.

Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Landolphia kirkii is scrambling shrub forming an integral part of the flora along the coastal areas of north-eastern South Africa. The non-sustainable harvesting of fruit as food source, by monkeys and rural communities and the highly recalcitrant nature of their seeds threatens the continuation of the species. In addition, the ability of the plants to produce high quality rubber makes its long-term conservation highly desirable. Previously, attempts have been made to cryopreserve germplasm of L. kirkii, but no survival had been recorded at cryogenic temperatures of below -140ºC. The present study reports on the effects of rapid dehydration, chemical cryoprotectants and various cooling rates, thawing and imbibition treatments on survival of embryonic axes excised with cotyledons completely removed, as well as with 3 mm portion of each cotyledon attached, from fresh, mature, recalcitrant seeds of L. kirkii. Survival was assessed by the ability for both root and shoot development in in vitro culture, the tetrazolium test and electrolyte leakage readings. At seed shedding, embryonic axes were at the high mean water content of 2.24 g gˉ¹ (dry mass basis). All axes (with and without attached cotyledonary segments) withstood rapid (flash) drying to a water content of c. 0.28 g gˉ¹; however, the use of chemical cryoprotectants, singly or in combination, before flash-drying was lethal. Rapid cooling rates were detrimental to axes flash-dried to 0.28 g gˉ¹, with no explants showing shoot production after exposure to -196ºC and -210ºC. Ultrastructural examination revealed that decompartmentation and loss of cellular integrity were associated with viability loss after rapid cooling to cryogenic temperatures, although lipid bodies retained their morphology regardless of the thawing temperature employed. Furthermore, analysis of the lipid composition within embryos of L. kirkii revealed negligible amounts of capric and lauric acids, suggested to be the medium-chained saturated fatty acids responsible for triacylglycerol crystallisation when lipid-rich seeds are subjected to cryogenic temperatures. Hence, lipid crystallisation was not implicated in cell death following dehydration, exposure to cryogenic temperatures and subsequent thawing and rehydration. Rapid rehydration of embryonic axes of L. kirkii by direct immersion in a calcium-magnesium solution at 25ºC for 30 min (as apposed to slow rehydration on moistened filter paper or with rehydration in water) was associated with highest survival post-dehydration. Cooling at 1ºC minˉ¹ and 2ºC minˉ¹ facilitated survival of 70 and 75% respectively of axes with attached cotyledonary segments at 0.28 g gˉ¹ after exposure to - 70ºC. Viability retention of 40 and 45% were recorded when embryonic axes with attached cotyledonary segments were cooled at 14 and 15ºC minˉ¹ to temperatures below -180ºC. However, no axes excised without attached cotyledonary segments produced shoots after cryogenic exposure. The use of slow cooling rates is promising for cryopreservation of mature axes of L. kirkii, but only when excised with a portion of each cotyledon left attached.

Description

Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.

Keywords

Apocynaceae., Plant cells and tissues--Cryopreservation., Germplasm resources, Plant--Cryopreservation., Seeds--Preservation., Theses--Botany.

Citation

DOI