Determination of neonicotinoid insecticides in water, soil and sediment samples: acute and chronic risk assessment.
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Neonicotinoids are a type of insecticides pesticides widely used worldwide as a result of their low vertebrates toxicity, relative environmental stabilities, good bioavailability and high level of selectiveness. These insecticides are commonly employed in agricultural activities, in grass management and horticulture as well as in households to control domestic pet flea. Due to neonicotinoids intensive usage, they are continuously introduced to the water bodies where they can adversely affect the aquatic life and accumulate in sediments. Moreover, they can end up in drinking and unintentionally consumed by human beings resulting to health effects. With this regard, this work reports for the first time on the occurrence of neonicotinoids in sediment, soil tap, sludge, wastewater and river water samples from the province of KwaZulu-Natal. Also, the ecological risk of neonicotinoids in water sources was also assessed for the first time in the samples from this province.The liquid chromatography coupled with a photo-diode array detector (LC-PDA) method was modified and applied for the simultaneous detection of neonicotinoids (clothianidin, thiamethoxam and imidacloprid). Ultrasonic extraction (UE), soxhlet extraction (SE) and solid-phase extraction (SPE) methods were developed and applied for the extraction of nitro-guanidine neonicotinoids in water, soil and sediment samples. The SPE, SE, and UE parameters that influence the recoveries of the analytes were first optimized before application to real samples for the analytes recovery improvement. The SPE was used for the extraction of neonicotinoids in sludge and water samples, while SE and UE were both used to extract soil and sediment samples. The extraction conditions optimized for SPE were conditioning solvent and sample volume. While for the UE were extraction time, extraction solvent, and the solvent volume. And for SE method, extraction solvent and the extraction solvent volume were optimized. The LC-PDA method used for detection was also first optimized to improve peak separation, retention times, detection limits and quantification limits. The optimized parameters for the LC-PDA method were the mobile phase, flow rate, and the PDA detection wavelength. Optimum water recoveries of the neonicotinoids ranged from 79 to 112%. The detection and quantification limits of the analytes in water samples were 0.013 - 0.031 μg/L and 0.041 - 0.099 μg/L, respectively. The obtained analytes concentration ranged from 0.061 - 0.10 μg/L, 0.077- 3.76 μg/L and 0.99 - 15 μg/L in tap, river and wastewater, respectively. Analyte recoveries ranged from 85 - 102% in soil and 92 - 103% in sediment for the ultrasonic extraction method. The neonicotinoid recoveries ranged from 83 to 109% in soil and between 84 to 94% in sediment samples for the Soxhlet extraction method. The method’s detection limits and quantification limits in solid samples ranged from 40 - 80 μg/kg and 140 - 270 μg/kg, respectively. The relative standard deviation was less than 4%. The concentration determined in real environmental samples were 47 to 410 μg/kg in soil and 25 to 410 in sediment. The toxicity studies showed that clothianadin pose a high risk towards daphnia species in the river. Imidacloprid, clothianidin and thiamethoxam posed medium risk against algae, daphnia and fish species in the effluent receiving water bodies. These results imply the necessity to continuously monitor these neonicotinoids in the water sources. In South Africa there is limited data concerning the environmental occurrence of neonicotinoids, therefore this work will contribute towards the information available for the analysis of neonicotinoids. This will assist the policy makers to establish the MRL values that are precise for the African continent.
Description
Masters Degree. University of KwaZulu-Natal, Pietermaritzburg.
Keywords
Citation
DOI
https://doi.org/10.29086/10413/22664