The development of a weighted directed graph model for dynamic systems and application of Dijkstra’s algorithm to solve optimal control problems.
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Optimal control problems are frequently encountered in chemical engineering process control applications as a result of the drive for more regulatory compliant, efficient and economical operation of chemical processes. Despite the significant advancements that have been made in Optimal Control Theory and the development of methods to solve this class of optimization problems, limitations in their applicability to non-linear systems inherent in chemical process unit operations still remains a challenge, particularly in determining a globally optimal solution and solutions to systems that contain state constraints.
The objective of this thesis was to develop a method for modelling a chemical process based dynamic system as a graph so that an optimal control problem based on the system can be solved as a shortest path graph search problem by applying Dijkstra’s Algorithm. Dijkstra’s algorithm was selected as it is proven to be a robust and global optimal solution based algorithm for solving the shortest path graph search problem in various applications. In the developed approach, the chemical process dynamic system was modelled as a weighted directed graph and the continuous optimal control problem was reformulated as graph search problem by applying appropriate finite discretization and graph theoretic modelling techniques. The objective functional and constraints of an optimal control problem were successfully incorporated into the developed weighted directed graph model and the graph was optimized to represent the optimal transitions between the states of the dynamic system, resulting in an Optimal State Transition Graph (OST Graph). The optimal control solution for shifting the system from an initial state to every other achievable state for the dynamic system was determined by applying Dijkstra’s Algorithm to the OST Graph.
The developed OST Graph-Dijkstra’s Algorithm optimal control solution approach successfully solved optimal control problems for a linear nuclear reactor system, a non-linear jacketed continuous stirred tank reactor system and a non-linear non-adiabatic batch reactor system. The optimal control solutions obtained by the developed approach were compared with solutions obtained by the variational calculus, Iterative Dynamic Programming and the globally optimal value-iteration based Dynamic Programming optimal control solution approaches. Results revealed that the developed OST Graph-Dijkstra’s Algorithm approach provided a 14.74% improvement in the optimality of the optimal control solution compared to the variational calculus solution approach, a 0.39% improvement compared to the Iterative Dynamic Programming approach and the exact same solution as the value–iteration Dynamic Programming approach. The computational runtimes for optimal control solutions determined by the OST Graph-Dijkstra’s Algorithm approach were 1 hr 58 min 33.19 s for the nuclear reactor system, 2 min 25.81s for the jacketed reactor system and 8.91s for the batch reactor system. It was concluded from this work that the proposed method is a promising approach for solving optimal control problems for chemical process-based dynamic systems.
Description
Master of Science (Chemical Engineering). University of KwaZulu-Natal. Durban, 2017.