Exploring the use of technology-based teaching methods when teaching shape and space in grade 10 Mathematical Literacy.
dc.contributor.advisor | Naidoo, Jayaluxmi. | |
dc.contributor.author | Hansraj, Sharda. | |
dc.date.accessioned | 2021-11-22T23:52:25Z | |
dc.date.available | 2021-11-22T23:52:25Z | |
dc.date.created | 2021 | |
dc.date.issued | 2021 | |
dc.description | Doctoral Degree. University of KwaZulu-Natal, Durban. | en_US |
dc.description.abstract | It is increasingly essential to the South African education system that effective curriculum delivery is intensified. The integration of technology in the teaching and learning process has become increasingly important in view of the advent and accessibility of technology in the school milieu. The South African government has embarked on the rollout of the Fourth Industrial Revolution to align the country to the technological advancements that occur internationally. This study explored how technology-based teaching and learning impacted grade 10 Mathematical Literacy learners whilst teaching shape and space in a suburban public school. The recent changes in the mathematics curriculum in South Africa is an important endeavour by the Department of Basic Education to ensure that no learner is left behind in the quest to produce mathematically literate learners countrywide. Mathematical Literacy was introduced as a subject in South Africa in 2006 at grade 10 level. Technical Mathematics was introduced at grade 10 level in 2016.The rationale to such inclusions in the curriculum was that mathematical skills become available to all learners. The challenges experienced in the Mathematical Literacy classroom resulted in the quality of the Mathematical Literacy passes declining instead of improving. The exploratory nature of this research study is informed by strategies recommended by educational researchers and literature on the use of technology in teaching and learning. The intention of this study was to explore what technology is being used currently in a Mathematical Literacy classroom and whether the use of technology based teaching methods when teaching shape and space in a grade 10 Mathematical Literacy class has an impact on the learning process. Activity Theory was used as the framework in which the study was located. All activities were interrogated within the interpretive paradigm. The interpretative study engaged with a mixed-method approach to generate data. Qualitative and quantitative methods were used to collate and analyse the data collected. The data generation tools consisted of two sets of questionnaires, focus group interviews, a pre and post-task and reflections sheets. All the data were aggregated and then analysed thematically. A key finding to this research study is that technology-based teaching and learning did indeed impact the teaching and learning process positively. The learners’ ability to consolidate their understanding of the concepts taught on shape and space, which were taught using the YouTube videos, Powerpoint presentations and worksheets, helped to improve learner performance when they handled the tasks covering shape and space. The technological tools utilised in the delivery of the lessons were a computer, a white board, a data projector and the internet facilities. The study offers suggestions on how technology can be integrated with the teaching and learning process to meet the needs of the millennial learner especially when teaching concepts such as shape and space in Mathematical Literacy. It recommends that teacher retraining and reskilling is imperative to equip teachers to integrate the use of technology effectively in the classroom situation. Teaching methods and techniques need to be refreshed and aligned to the dynamic nature of curricula and the context in which the school finds itself. The findings of the study showed that although technology is available at this public high school, it is currently not being adequately integrated in the classroom. Although the small sample used in this research prevents the study’s results from being generalized, these findings may influence the education sector particularly curriculum managers responsible for teacher development. A veiled finding is this study suggests that a school cannot function in isolation and that it needs the support and the collegiality of all government departments and the support of communities in order to function effectively and efficiently. This exploratory study concludes with recommendations for further research. | en_US |
dc.identifier.uri | https://researchspace.ukzn.ac.za/handle/10413/19944 | |
dc.language.iso | en | en_US |
dc.subject.other | Technology-based teaching and learning. | en_US |
dc.subject.other | Technology in education. | en_US |
dc.subject.other | School mathematics. | en_US |
dc.subject.other | Technical mathematics. | en_US |
dc.subject.other | Pedagogy. | en_US |
dc.subject.other | Teacher development. | en_US |
dc.subject.other | Mathematics curriculum. | en_US |
dc.title | Exploring the use of technology-based teaching methods when teaching shape and space in grade 10 Mathematical Literacy. | en_US |
dc.type | Thesis | en_US |