Repository logo

Utilisation of bagasse for the production of C5- and C6- sugars.

dc.contributor.advisorNeytzell-de Wilde, Frank Gerard.
dc.contributor.authorTrickett, Richard Charles.
dc.descriptionThesis (M.Sc.)-University of Natal. Durban, 1982.en
dc.description.abstractSurplus sugarcane bagasse, estimated at a maximum of 0,9x106 tons/year, represents an annual renewable resource which is readily available at the mill site and is a suitable potential source of alternative fuels and chemical feedstocks. This work contains an extensive literature survey which covers the production of C5- and C6- sugars from lignocelluloses by chemical hydrolysis and the pretreatment of cellulosic materials for enzymatic hydrolysis of the cellulose fraction. This survey was then used to determine the final direction of this research into the utilisation of bagasse for the production of fermentable sugars. It was decided that research should be directed at the dilute acid hydrolysis of the bagasse hemicellulose fraction to determine whether this fraction could be selectively hydrolysed from the complex lignocellulose structure and to obtain xylose yields under different hydrolysis conditions. Acids, especially acetic acid, are liberated from bagasse by steaming at elevated temperatures. In this acid medium the hemicelluloses are hydrolysed and become soluble. Autohydrolysis tests on whole bagasse indicate that hemicellulose hydrolysis becomes significant at temperatures above 140°C. However, the autohydrolysis liquor would still require dilute mineral acid hydrolysis to convert the pentose oligomers to their monomeric forms. Dilute sulphuric and batch hydrolysis of whole bagasse hemicellulose has thus been investigated at a solid to liquid ratio of 1:15 over the following temperature and acid concentrations ranges : 80° to 150°C and 3 to 40 g/l acid. Xylose, glucose, furfural and acetic acid formation and sulphuric acid consumption were monitored during these hydrolyses. Hemicellulose hydrolysis to produce mainly xylose is readily achieved over the entire range of acid hydrolysis conditions tested with little removal of the other bagasse components (lignin and cellulose). At the upper end of the temperature range acid concentrations below 20 g/l are sufficient for hemicellulose hydrolysis due to the effect of temperature on reaction rate. The bagasse hemicellulose consists of two fractions, an easily hydrolysable portion containing 165 mg of potential xylose/g bagasse and a resistant fraction containing 105 mg of potential xylose/g bagasse. A first order reaction model has been developed using the batch acid hydrolysis results. It is based on two hemicellulose fractions reacting simultaneously to give a common product (xylose) and predicts total xylose yield as a function of hydrolysis time for a given set of hydrolysis conditions. The encouraging xylose yields obtained during the batch hydrolyses led to the design of a continuous hydrolysis reactor to process bagasse at low liquid to solid ratios to determine whether xylose yields similar to the batch hydrolysis yields could be obtained at the same hydrolysis conditions. The continuous hydrolyses showed that for the conditions tested the xylose yields are unaffected by the decrease in liquid to solid ratio (down to 3,6:1) and it would appear that reactor performance is still controlled by reaction kinetics. A number of reactor configurations for the industrial production of pentoses from bagasse hemicelluloses are also proposed.en
dc.subjectSugar--Manufacture and refining--By-products.en
dc.subjectWaste products as fuel.en
dc.subjectTheses--Chemical engineering.en
dc.titleUtilisation of bagasse for the production of C5- and C6- sugars.en


Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
25.99 MB
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
1.64 KB
Item-specific license agreed upon to submission