Repository logo

Genetic study of cowpea (Vigna unguiculata (L.) Walp) resistance to Striga gesnerioides (Willd.) vatke in Burkina Faso.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



In Burkina Faso, the existence of different races of Striga gesnerioides (Willd.) Vatke, with apparent variable aggressiveness on cowpea (Vigna unguiculata (L.) Walp) renders the breeding task very complex. Therefore, a number of studies was carried out from 2006 to 2009 in field, pot and ‘’in-vitro’’ to identify new sources of resistance to three prevailing Striga races, SR 1, SR 5 and a newly occurring Striga race named SR Kp and to understand the genetic pattern of the underlying resistance of cowpea germplasm to Striga races found in Burkina Faso. To achieve these objectives, the following investigations were initiated: (i) a participatory rural appraisal (PRA), a participatory variety selection (PVS) and grain quality survey were implemented to identify cowpea breeding priorities for Burkina Faso Striga hot-spots; (ii) the identification of sources of resistance in Burkina Faso germplasm, using three prevailing Striga races of S. gesnerioides as sources of inoculum; (iii) the identification of the mechanisms of resistance underlying the resistance to Striga in such genotypes; (iv) a study of combining abilities of selected parents through a diallel cross; (v) a study of the segregation patterns in crosses involving resistant and susceptible sources and a study of the allelic relationships between different resistance sources. The participatory studies conducted in 2007 and 2008 over three districts in Striga hotspots; there was no effective control method against Striga at farmers’ level. These investigations highlighted the importance of cowpea across all sites. Rain decline over time, low input use coupled with a poor extension system were the major constraints mentioned by farmers. Differential reactions of genotype KVx61-1 for Striga resistance suggested that different Striga races were prevailing in different areas. Farmers’ preferred traits in cowpea genotypes were oriented towards grain quality such as big sized grain, white seed colour and rough texture of cowpea grain, except in Northern-Burkina Faso, where farmers preferred brown-coloured grain for food. Cowpea was also seen as an income generating crop. An evaluation of 108 genotypes was done in 2007 in the field (rainy season) and in pots (off-season) for Striga resistance assessments. The screening trials enabled the identification of sources of resistance to S. gesnerioides. Genotypes KVx771-10, IT93K- 693-2, KVx775-33-2, Melakh and IT81D-994 are potential sources of resistance to all three Striga races with acceptable yield. Landraces were susceptible and late-maturing whilst most wild species were resistant but with unwanted shattering traits. A combining ability study for Striga resistance parameters conducted in pots and a resistance mechanism study conducted ‘’in-vitro’’ were performed using F1 populations from a 10 x 10 diallel cross. The general combining ability (GCA) effects were significant for the resistance parameters Striga emergence date (DSE), Striga height above soil (SH), cowpea grain weight (CGW), hundred grain weight (HGW) for all Striga races involved and Striga vigour (SVIG) for SR 5 and SR Kp. The pot-screening showed that, regardless of the SR used as inoculum, the additive genes were important in conferring Striga resistance for parameters DSE, SH, CGW and HGW. The selection of parents could therefore result in breeding advance. Complete dominance, partial, over-dominance and non-allelic interactions (epistasis or failure of some assumptions) were present for some parameters. The ‘’in-vitro’’ screening showed that additive genes were important, with high narrow sense heritability values for the resistance mechanisms Striga seed germination frequency (GR) for SR 1 and SR Kp, the frequency of Striga radicle necrosis before the penetration in cowpea rootlet (NBP) for SR 5, the frequency of Striga radicle necrosis after the penetration in cowpea rootlet (NAP) for SR 1 and SR Kp and the susceptibility ‘’in-vitro’’ (SIV) for SR 5 and SR Kp. The selection of parents can be useful in accumulating the genes for Striga resistance mechanisms in progenies. The F2 populations derived from crosses between Striga-resistant x susceptible genotypes were evaluated in Striga infested benches in 2008 and 2009. The segregation patterns suggest that single dominant genes govern Striga resistance. The test for allelism showed that two non-allelic genes were responsible for the resistance to S. gesnerioides in cowpea. A new Striga resistance gene seems to be involved in genotype KVx771-10 resistance to S. gesnerioides, which confers resistance to all studied Striga races. Gene 994-Rsg in genotype IT81D-994 which confers Striga resistance to SR 1 and gene Rsg 3 also conferring Striga resistance to SR 1 segregated differently for the resistance to SR 5 suggesting that they were different but both confer resistance to SR 5.



Cowpea--Disease and pest resistance--Genetic aspects., Cowpea--Breeding--Burkina Faso., Cowpea--Burkina Faso--Genetics., Striga., Cowpea--Varieties--Burkina Faso., Farmers--Burkina Faso., Theses--Plant breeding., Cowpea--Diseases and pests--Burkina Faso.