Repository logo

Synthesis of prenylated benzoquinones.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



The research presented in this study demonstrates the critical role that organic synthesis plays in natural product chemistry. The biological activity demonstrated by 2-methyl-6-(3-methyl-2- butenyl)benzo-1,4-quinone prompted an investigation into the synthesis of this compound. This natural product showed significant activity against Staphylococcus epidermidis. Therefore the aim of this study was to synthesise 2-methyl-6-(3-methyl-2-butenyl)benzo-1,4- quinone and structural analogues. The regioselective synthetic route formulated for the synthesis of 2-methyl-6-(3-methyl-2- butenyl)benzo-1,4-quinone involved five steps. Different strategies towards the synthesis of this compound were investigated. The regioselective C-alkylation step was proving to be the most challenging. The synthetic strategies investigated included carbon alkylation of a phenoxide, directed-o-metallation, metal-halogen exchange and copper(II) Grignard-type metal halogen exchange. Problems were encountered with regioselectivity when carbon alkylation of a phenoxide was employed for the o-prenylation of o-cresol. The C-prenylated isomer was formed along with the O-prenylated isomer. When the reaction temperature was lowered, the yield of the desired C-prenylated isomer improved, whereas the yield of O-prenylated isomer declined. Although the reaction was performed under different conditions, the formation of the O-prenylated isomer could not be prevented. Therefore, another synthetic strategy was considered. The directed-o-metallation reaction was subsequently employed because of the associated regioselectivity. Unfortunately the desired product was not obtained when this method was employed. The reaction was attempted using different conditions, but the product could not be isolated. Since the directed-o-metallation protocol did not yield the desired results, another method was considered. Therefore, a metal-halogen exchange reaction was employed. The metal-halogen exchange transformation was preceded by the preparation of the o-brominated precursor. Regioselectivity-related problems were initially encountered during the synthesis of the obrominated precursor. The o-brominated isomer was formed in a 1:1 ratio with the pbrominated isomer. Further investigation led to a synthetic protocol that afforded the desired o-brominated isomer in a better yield. The metal-halogen exchange transformation was subsequently attempted, but the product was obtained in an unsatisfactory yield. Therefore, another method was employed in an effort to achieve regioselective C-alkylation with a better yield. Copper(II) Grignard-type metal-halogen exchange was successfully employed to achieve regioselective C-alkylation in good yield. The subsequent step was the deprotection, although problems were encountered, it was eventually achieved. The final step was the oxidation to obtain the desired compound, 2-methyl-6-(3-methyl-2-butenyl)benzo-1,4- quinone. The same procedure was successfully applied in the synthesis of structural analogues 2-isopentyl-6-methylbenzo-1,4-quinone, 2-(3,7-dimethylocta-2,6-dienyl)-6-methyl-1,4- benzoquinone and 2-(3,7-dimethyl-octyl)-6-methyl-1,4-benzoquinone.


Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.


Gunnera perpensa., Medicinal plants., Quinone., Chemistry, Organic--Synthesis.