Cape elements on high-altitude corridors and edaphic islands.
Date
2004
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Common to the temperate floras throughout sub-Saharan Africa is a group of taxa with strong ties to the Cape Floristic Region (CFR) (≈ Cape elements). Their distribution is limited to the eastern escarpment of Africa (e.g. the Drakensberg Alpine Centre - DAC), on nutrient-rich humic soils, as well as on isolated sandstone outcrops of low elevation, on nutrient-poor soils (e.g. the Pondoland Centre - PC), suggesting that intrinsic soil fertility is not the primary determinant of their distribution. The principal aim of this study was to determine which aspect of the edaphic environment of the DAC is most
influenced by temperature, that may indirectly render it nutrient-poor and
therefore provide suitable niches for Cape elements, as in the PC. A
multidisciplinary approach involving aspects of plant biogeography, plant
ecology, plant ecophysiology and soil chemistry was therefore adopted. The
study regions were the DAC, PC and the KwaZulu-Natal Midlands. The flora of the DAC was resurveyed for this study, and is richer than previously thought: 2818 native taxa, most of which (2520) are angiosperms. The phytogeography of the DAC and PC is discussed, and comparisons are made with the floras of KwaZulu-Natal and the CFR. Their climatic environments, as well as those for the CFR and Sneeuberge, were compared using rainfall and temperature data from a range of sources. These climatic regimes were correlated with the floristic patterns of Cape elements for the high-altitude regions of South Africa and Lesotho. Altitude and rainfall increased, and temperature decreased, as the
number of Cape elements increased towards the DAC. This study provided a contemporary inventory of the Cape elements of the DAC and PC. A total of 89 genera are recognised as Cape elements, of which 60 (c. 67%) are shared between the two regions. The highest number of Cape elements recorded for the eastern escarpment was the DAC (72 genera), with the highest number from all sites analysed being the PC (77 genera). The most Cape elements are contributed by the Asteraceae, Scrophulariaceae, Iridaceae, Fabaceae, Orchidaceae and Restionaceae, partly due to the success of annual aerial parts and their geophytic growth forms, which are convergent in these families. Further compartmentalisation into life and growth forms shows that most Cape elements of the DAC and PC are either ericoid (and sclerophyllous) or mesic herbs and shrubs. The ecological and ecophysiological aspects of this study involved the use of reciprocal pot experiments established along a gradient of altitude from coastal hinterland to mountain, that investigated the interactions between altitude, temperature and substrate on plant productivity in sites known either to support or to exclude Cape elements. Three soils were used at
each site, representative of the DAC, PC and KwaZulu-Natal Midlands. The
interactions between 'soil' and 'site' (≈ the climatic environment) were
quantified using a temperate test taxon (Diascia) that has a strong Cape-centred distribution. Plant characters relating to morphology and nutrient content, and soil characters relating to fertility, were used as the basis for comparing treatment effects (soil-site interactions). Soil nitrogen availability was assayed using pot experiments with Eragrostis curvula (Schrad.) Nees. Wheat pot experiments revealed no Al³⁺ toxicity in 'Drakensberg' soil. Non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicated that all soil-site interactions were significant contributors to biomass differences, and that the Cape taxon performed poorly in the nutrient-rich Drakensberg soil at low altitude. Soil samples indicated that Drakensberg soil was the most nutrient-rich, and Pondoland soil the most nutrient-poor. Although total nitrogen
in Drakensberg soil was six times higher than Pondoland soil, both soils
mineralised similar low levels of nitrogen at their respective spring
temperatures. The result for Drakensberg soil (simulated so as to include the effect of altitude) meant that only 1.7% of its total nitrogen was mineralisable at 12°C (its mean spring temperature). These findings suggest that nitrogen mineralisation rate is a key growth-limiting factor in the DAC, exacerbated by a number of complex interactions with soil pH and organic matter. It is hypothesized that Cape elements are preadapted to high-altitude habitats. These habitats are nutrient-deprived due to low temperatures, which reduce metabolic rates and the movement of ions in cold soils. This constraint imposes nutrient-related stresses similar to those of the CFR and PC. Taxa that are adapted to the nutrient-poor soils of the CFR are preadapted to the temperature-induced 'nutrient-poor' soils of the DAC and vice versa. This 'compatibility' has allowed the reciprocal exchange of taxa between regions, as suggested by cladistic biogeographical analyses using Cliffortia, Disa, Moraea and Pterygodium. The strong overlap of Cape elements between the CFR and PC is a product of similar nutritional niches and ancient floristic continuity. The result therefore is a high number of Cape elements common to the DAC and PC.
Description
Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2004.
Keywords
Plants--South Africa., Plant ecology--South Africa., Phytogeography--South Africa., Flowers--South Africa., Theses--Botany., Plants, Effect of altitude on.