Repository logo

Study the effect of topology on the performance of an advanced metering infrastructure network.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title



A smart grid operates based on the integration of various renewable energy sources, distributed generators and storage units in order to deliver an uninterrupted energy supply to consumers. Such a complex grid requires a network of intelligent sensors and an effective communication infrastructure to provide bi-directional flows of information between different grid entities for monitoring and control purposes. A crucial part of the smart grid communication network is the advanced metering infrastructure connecting a utility company to end-users to support telemetry and remote-control applications. Although different technologies and standards for smart metering systems exist, the G3-PLC standard, which uses the power-line communication (PLC) technology, is the accepted standard in South Africa for connecting smart meters to data concentrators. Studying the topology of an AMI network can help improve the network’s Quality-of-Service to support more advanced applications. The analytical analysis is usually considered a viable method for studying the topological effect on the performance of PLC-based AMI networks, as physically altering such networks can become very costly. Therefore, in this research, such methods have been used to investigate the effect of topology on the performance of the G3-PLC AMI network. To better understand the system, an overview of the G3-PLC standard for smart metering application has been covered. This includes covering the DLMS/COSEM protocol at the application layer and its relation to the G3-PLC. This follows by providing the mathematical model for the G3-PLC AMI network to study the effect of topology on its performance. Based on the provided method, first, the distances between data concentrators and smart meters are identified. Then the graph theory has been used to calculate the transfer function between every node in the system for obtaining the system’s total capacity. It was shown that the performance of the system decreases as longer branches are added to the network.


Masters Degree. University of KwaZulu-Natal, Durban.