• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Masters Degrees (Electronic Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Electronic Engineering
    • Masters Degrees (Electronic Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementation of a testbed for MISO OFDM communication systems.

    Thumbnail
    View/Open
    Thesis. (1.946Mb)
    Date
    2012
    Author
    Duma, Weziwe Mfanafuthi.
    Metadata
    Show full item record
    Abstract
    The thesis presents an implementation of a multiple input single output orthogonal frequency division multiplex (MISO OFDM) communication system testbed. The project was developed in order to evaluate whether the channel estimation algorithms developed by Dr Oyerinde [1] could be implemented in a real time communication system that uses today’s technology. This implementation based validation would help determine the practicality of algorithms and methods that promise better performance for communication systems from a simulation point of view. The benefits of using multiple orthogonal carriers are discussed as well as how an OFDM system works. The benefits of using multiple antennas at the transmitter, as opposed to using just one, are also discussed. The Alamouti scheme which allows space diversity to be achieved without the cost of having a lower data rate is presented. Modules common to all communication systems, such as those dedicated to synchronization, channel estimation, symbol detection and channel coding, are discussed. The different methods of synchronization for OFDM communication systems are presented and compared. The channel estimation algorithm developed by Dr Oyerinde is presented and is adopted for an indoor channel. Most of the system blocks and parameters used in the testbed are the same as those used in [1] in order to easily compare the results obtained by simulation and those obtained by implementation. The system bandwidth required for the project was too high for the processor chosen for the testbed. A qualitative evaluation of the practicality of Dr Oyerinde’s channel estimation algorithms was performed instead. From this evaluation it was derived that Dr Oyerinde’s non-iterative decision directed channel estimation algorithm was more suitable for real time non-iterative decision directed channel estimation communication systems than for iterative versions. Apart from processing demands that couldn’t be met, the other aspects of the project were implemented successfully.
    URI
    http://hdl.handle.net/10413/9145
    Collections
    • Masters Degrees (Electronic Engineering) [139]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV