On purity relative to an hereditary torsion theory.
Date
1992
Authors
Gray, Derek Johanathan.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The thesis is mainly concerned with properties of the concept
"σ-purity" introduced by J. Lambek in "Torsion Theories, Additive
Semantics and Rings of Quotients", (Springer-Verlag, 1971).
In particular we are interested in modul es M for which every exact
sequence of the form O→M→K→L→O (or O→K→M→L→O or O→K→L→M→O) is σ-pure
exact. Modules of the first type turn out to be precisely the
σ- injective modules of O. Goldman (J. Algebra 13, (1969), 10-47).
This characterization allows us to study σ- injectivity from the perspective of purity.
Similarly the demand that every short exact sequence of modules of the form O→K→M→L→O or O→K→L→M→O be σ-pure exact leads to concepts which generalize regularity and flatness respectively. The questions of which properties of regularity and flatness extend to these more general concepts of σ- regularity and σ-flatness are investigated.
For various classes of rings R and torsion radicals σ on R-mod, certain conditions equivalent to the σ-regularity and the σ-injectivity of R are found.
We also introduce some new dimensions and study semi-σ-flat and
semi-σ-injective modules (defined by suitably restricting conditions
on σ-flat and σ-injective modules). We further characterize those rings R for which every R-module is semi- σ-flat.
The related concepts of a projective cover and a perfect ring
(introduced by H. Bass in Trans. Amer. Math. Soc. 95, (1960), 466-488)
are extended in a 'natural way and, inter alia , we obtain a generalization of a famous theorem of Bass.
Lastly, we develop a relativized version of the Jacobson Radical which is shown to have properties analogous to both the classical Jacobson Radical and a radical due to J.S. Golan.
Description
Thesis (Ph.D.)-University of Natal, 1992.
Keywords
Torsion theory (Algebra), Modules (Algebra), Theses--Mathematics.