Show simple item record

dc.contributor.advisorHaynes, Richard J.
dc.creatorMajaule, Ugele.
dc.date.accessioned2011-08-17T07:37:38Z
dc.date.available2011-08-17T07:37:38Z
dc.date.created2006
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/10413/3457
dc.descriptionThesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.en
dc.description.abstractLittle is known regarding the effects of land use on soil organic matter and P status of South African soils. For that reason, the effects of the main agricultural land uses in the midlands region of KwaZulu-Natal [maize (Zea mays), sugarcane (Saccharum spp), annual ryegrass pasture (Lolium multiflorum), permanent kikuyu pasture (Pennisetum clandestnum), gum (Eucalyptus grandis) and pine (Pinus patula)] on soil organic matter content, microbial biomass C and P and inorganic and organic P pools derived from a modified Hedley P fractionation was investigated on two sites where the longterm history of land management was known. In comparison with undisturbed native grassland, permanent kikuyu pasture resulted in an increase in organic C, organic P and microbial biomass C and P. Maize and sugarcane production resulted in a decrease in organic C, organic P and microbial C and P. Under annual pasture, gum and pine forests, organic matter and microbial biomass concentrations remained similar to those under native grassland. Under native grassland, extractable organic P accounted for 50% or more of the total P content of soils but under agricultural management with regular applications of fertilizer P, there was an increase in the percentage of total P present as inorganic P. Agricultural management greatly affected the distribution of P among the various inorganic and organic P fractions. Resin-Pi and NaHC03-Pi (the potentially-available forms of Pi) showed similar trends with land use being greatly elevated under kikuyu pasture at both sites and sugarcane and maize at one site. This accumulated Pi was thought to have originated from recent fertilizer applications and possibly recently mineralized organic P. Trends for NaOH-Pi with land use differed greatly from those of the Resin- and NaHC03Pi fractions. Concentrations were notably high under maize and sugarcane production. Of the pools of soil organic P, the NaHC03-Po fraction was most greatly affected by land use, being elevated under kikuyu and decreased under maize and sugarcane. This supports the assertion that it is the NaHC03-Po fraction that is the most labile soil organic P pool. It was concluded that land use greatly affects soil organic C and P status, soil microbial biomass C and P contents, soil inorganic P concentrations and the distribution of P among the various P fractions. A short-term (8 weeks) laboratory incubation experiment was carried out to compare the effects of inorganic (KH2P04) and organic (cattle manure, poultry manure and maize crop residues) sources of P, applied at a rate equivalent to 30 kg P ha-1 , on soil inorganic and organic P fractions and the potential availability of soil P. Additional treatments consisted of lime [Ca(OHhl at 5 ton ha-1 and lime plus inorganic P. Applications of lime raised soil pH to a similar extent after 1, 4 and 8 weeks incubation. After 8 weeks, a small increase in soil pH was also noted for the cattle and poultry manure and maize residue treatments. For the inorganic P fractions, substantial treatment effects were observed only for the Resin-Pi fraction. The inorganic P source was more effective than the organic ones at increasing Resin-Pi after 1 and 4 weeks incubation and of the organic sources, cattle and poultry manure were more effective than maize residues. Resin-Pi concentrations generally increased between 1 and 4 weeks incubation but then declined rapidly between 4 and 8 weeks incubation. After 8 weeks incubation, treatment effects on Resin-Pi were small. Concentrations of NaHC03-Pi, dilute HCI-Pi and concentrated HCI-Pi all declined over the incubation period. There was no clear trend with incubation for NaOH-Pi although for the poultry manure and maize treatments, concentrations declined between 4 and 8 weeks incubation. In general, concentrations of NaHC03-Po were greater for organic than inorganic P sources after 8 weeks incubation suggesting microbial immobilization of P in these treatments. There were increases in NaHC03-Po and concentrated HCI-Po over the incubation period suggesting progressive immobilization of P from the Pi fractions that declined in concentration during the incubation. Concentrations of NaOH-Po were not greatly affected by incubation period. The lime treatments, however, had lower NaOH-Po concentrations than the others suggesting that liming may have stimulated microbial mineralization of Po. Residual-P concentrations increased over the incubation period. This was attributed to conversion of extractable Pi fractions into recalcitrant, non-extractable Pi forms and/or immobilization of Pinto intransigent organic forms.en
dc.subjectSoils--Analysis.en
dc.subjectSoils--Phosphorus content.en
dc.subjectLand use--Environmental aspects--KwaZulu-Natal.en
dc.subjectSoil chemistry--KwaZulu-Natal.en
dc.subjectSoil fertility--KwaZulu-Natal.en
dc.subjectSoil degradation--KwaZulu-Natal.en
dc.subjectTheses--Soil science.en
dc.titlePhosphorous dynamics in soils under contrasting long-term agricultural management practices in the KwaZulu-Natal midlands.en
dc.typeThesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record