• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Chemical Engineering
    • Masters Degrees (Chemical Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Chemical Engineering
    • Masters Degrees (Chemical Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adsorption of heavy metals on marine algae.

    Thumbnail
    View/Open
    Mbhele_Njabulo_2005.pdf (1.744Mb)
    Date
    2005
    Author
    Mbhele, Njabulo.
    Metadata
    Show full item record
    Abstract
    Biosorption is a property of certain type of inactive, microbial biomass to bind and concentrate heavy metals from even very dilute aqueous solutions. Biomass exhibits this property, acting just as a chemical substance, as an ion exchanger of biological origin. It is particularly the cell wall structure of certain algae that is found responsible for this phenomenon. In these experiments, the rate and extent for removal of copper is subjected to parameters such as pH, initial metal concentration, biosorbent size, contact time, temperature and the ability of the biomass to be regenerated in sorption-desorption experiments. The metal adsorption was found to be rapid within 25 minutes. The maximum copper uptake of 30 mg of copper / g of biomass has been observed, in the following conditions: 100 mg / L, 0.1 g of biomass, pH 4 and at temperature of 25°C. From this study, it was found that copper uptake is increasing with increase in pH, with optimum being pH 4. Copper uptake increases substantially from 0 to 25 minutes. Metal biosorption behaviour of raw seaweed Sargassum in six consecutive sorptiondesorption cycles were also investigated in a packed-bed column, during a continuous removal of copper from a 35 mg/l aqueous solution at pH 4. The sorption and desorption was carried out for an average of 85 and 15 hours, respectively, representing more than 40 days of continuous use of the biosorbent. The weight loss ofbiomass after this time was 13.5%. The column service time decreased from 25 hrs in the first cycle to 10 hrs for the last cycle.
    URI
    http://hdl.handle.net/10413/2825
    Collections
    • Masters Degrees (Chemical Engineering) [211]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV