• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Chemical Engineering
    • Masters Degrees (Chemical Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Chemical Engineering
    • Masters Degrees (Chemical Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative study of contacting equipment for the recovery of copper from cupric sulphate solution.

    Thumbnail
    View/Open
    Sukhraj_Natisha_2005.pdf (9.691Mb)
    Date
    2005
    Author
    Sukhraj, Natisha.
    Metadata
    Show full item record
    Abstract
    Ion exchange for the recovery of metals from solutions is a well established process. It features significantly in terms of being able to recover valuable substances from what would otherwise be waste streams as well as recovering substances that could be harmful to the environment if left in the waste stream. The more popular options for ion exchange processes could be batch, fixed bed, fluidized, moving bed, and chromatographic columns. Although most ion exchange processes tend to be batch processes making use of the fixed bed columns, technological developments enable the use of fluidized beds to be explored. The main purpose of this research was to compare the performance of a fixed bed ion exchange system with a fluidized ion exchange system for the recovery of copper from a cupric sulphate solution. By experimentation the bed depth required for each type of equipment (in order to achieve a specified percentage recovery of copper from a specified feed) was determined. The comparative advantage of one type of equipment over the other ensures the correct type of system to be used for a sulphate solution of a particular concentration. This study provides a basis for comparative studies of contacting equipment for the removal of other substances from dilute solutions.
    URI
    http://hdl.handle.net/10413/2687
    Collections
    • Masters Degrees (Chemical Engineering) [196]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV