• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Chemistry and Physics
    • Chemistry
    • Masters Degrees (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An investigation of new heterogeneous hydrotalcite-like catalysts for the cis-dihydroxylation of olefins.

    Thumbnail
    View/Open
    Govender_Mayashree_2004.pdf (19.39Mb)
    Date
    2004
    Author
    Govender, Mayashree.
    Metadata
    Show full item record
    Abstract
    The use of supported catalysts to essentially combine the positive traits offered by both homogeneous and heterogeneous catalysis has become a competitive field of research. In particular, hydrotalcite-like catalysts (HTIc) has proven to be valuable for this purpose. Various osmium - containing catalysts were synthesized according to the co-precipitation method viz. Os-Cu-HTIc, Os-Ni-HTlc and the Os-Co-HTlc. Techniques such as SEM, IR, EDS, XRD, ICP, BET and XPS were exploited during catalyst characterisation and these essentially confirm that the hydrotalcite (HT) structure has been obtained. Various olefin substrates, ranging from simple straight-chained alkenes to cyclic, allylic and halogenated olefins, were tested. The results are promising and suggest that the diols are produced both with high selectivity and in good yield. Further experiments suggest: 1) Ofthe various co-oxidants tested, N-methylmorpholine-N-oxide is most suitable 2) The reaction proceeds faster at 60 °C than at room temperature 3) The addition of water to the reaction mixture increases the rate of the reaction for most substrates and 4) The catalyst is thermally stable and produces better results when calcined at 200 0 C prior to use This thesis reports that a new heterogeneous catalytic system for the efficient and selective cisdihydroxylation of olefins has been developed - one which suggests no leaching of metal into the reaction solution and no over-oxidation products.
    URI
    http://hdl.handle.net/10413/2287
    Collections
    • Masters Degrees (Chemistry) [287]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV