Show simple item record

dc.contributor.advisorIjumba, Nelson Mutatina.
dc.contributor.advisorBritten, Anthony C.
dc.creatorLekganyane, Mokwape Johannah.
dc.date.accessioned2011-01-19T06:34:32Z
dc.date.available2011-01-19T06:34:32Z
dc.date.created2007
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/10413/2193
dc.descriptionThesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2007.en_US
dc.description.abstractThe main objective of this research was to study DC conductor corona loss (CL) and audible noise (AN) in the context of local climatic conditions, through corona cage measurements, and do a comparative analysis of the measured data with results available in literature and EPRI TLW software simulation results. The ultimate aim was to assess the applicability of the software to our local conditions and hence determine, if necessary, appropriate correction factors for application in HYDC transmission line designs. For this study, short term measurements of corona AN and currents were carried out in an indoor meshed cylindrical corona cage, under DC and AC voltages. The cage was later converted into a short test line and some of the measurements repeated. The DC supply was obtained from a two stage ±500 kV Walton-Cockroft generator. The AC voltages were obtained from a 2x 100 kV, 50 Hz, AC test transformer set. The tests were performed using single solid and stranded aluminum conductors with three different diameters (1.6 cm, 2.8 cm, and 3.5 cm). All the measurements were carried out at low altitude. A CoroCAM I camera was used to determine the corona inception gradients and to observe the corona activity at different surface gradients and under different voltages and polarities. AN measurements at different conductor surface gradients were done using the Rohde&Schwarz and the Bruel&Kjaer sound level meters. To obtain the frequency spectra, a Bruel&Kjaer octave-band filter set attached to the sound level meter was used. The measured data was corrected for both height and length effects, and then compared with simulations from the EPRI-TLW software through curve fitting. A digital micro-ammeter connected to the centre of the cage through a 560 .Q measuring resistor was used to measure the corona current. Current pulses were viewed using a digital storage oscilloscope. To verify the corona current results obtained from the cage measurements, current measurements were also done for a point-plane spark gap. The corona current data was, later on, used to evaluate the total corona power loss for DC. The results obtained from test line measurements were used to compare the CL and AN for different configurations. The effect of the space charge under DC voltages was assessed through current measurements. The measurements were done with the cage covered with an aluminum foil to trap the charge and then repeated with the cage uncovered. On the test line, the space charge effect was investigated using a high power fan blowing along the conductor, to simulate the wind factor. The results of this study have shown the characteristics of corona discharges under different system voltages. The results also give an understanding of how factors such as conductor surface conditions and size, polarity and system voltage affect CL and AN. Both CL and AN were found to increase with conductor size for the same conductor surface gradient and to be higher for stranded conductors. Positive polarity DC and AC noise levels were higher than the negative polarity levels. CL under positive polarity DC was lower than the negative polarity loss. The effects of space of space charge were noted to some extend. The comparison of test line results and cage results showed that CL depends more on the gap size and the shorter the gap the higher the loss. Hence CL results were not compared with the software simulations. The comparison between the corrected AN results and the software simulations showed a very good agreement. The comparison was done for the 3.5 cm and the 2.8 cm diameter conductors under both positive and negative polarities. The trends compared through curve fitting were quite similar and the trend line equations were of the same order of magnitude. The magnitudes of the corrected noise levels were higher than the CRIEPI and BPA predictions but closer to the EPRl prediction. Generally there is a very good and encouraging agreement between the available literature, simulation results and the results obtained from the laboratory measurements. It is proposed, as part of further studies, to extend this work to high altitude regions and use bundled conductors as well. Consideration of different and larger test configurations will provide an understanding of the effects of geometry on corona discharges. Space charge analysis will also assist in determining the effect of space charge on different configurations.en_US
dc.language.isoenen_US
dc.subjectCorona (Electricity)en_US
dc.subjectHigh voltage direct current.en_US
dc.subjectElectric power transmission.en_US
dc.subjectTheses--Electrical engineering.en_US
dc.titleA study of HVDC transmission line audible noise and corona loss in an indoor corona cage.en_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record