Repository logo
 

Combining ability, genetic gains and path coefficient analyses of maize hybrids developed from maize streak virus and downey mildew resistant recombinant inbred lines.

Loading...
Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Farmers in SSA continue to obtain low yields (less than two tonnes per hectare) despite the high potential yield (about 14 tonnes per hectare) that can be achieved. The development of improved and high yielding hybrids can help to reduce this gap significantly. Characterisation of maize inbred lines is crucial for developing high yielding maize hybrids. A line x tester analysis involving 38 crosses generated by crossing 19 maize inbred lines with two tropical testers was conducted for different agronomic traits. The maize inbred lines used in this study were sampled from a bi-parental inbred population developed by a shuttle breeding program at University of KwaZulu Natal. The objectives of the study were to estimate combining ability of inbred lines and hybrids, to evaluate the performance of the hybrids in agronomic traits and grain yield, to calculate breeding gains achieved through selection and to deduce the relationship between secondary traits and grain yield. In total 50 hybrids, including control hybrids were evaluated in the trial. The hybrids were planted in the summer season of 2014/15 under rainfed conditions at three sites, Cedara, Dundee and Ukulinga in five metre row plots and replicated twice in 5X10 alpha lattice design under recommended agronomic practices for maize. Data was collected using a CIMMYT protocol and subjected to statistical analyses using ANOVA and REML packages in GENSTAT 14th edition and PATHSAS macros in SAS 9.3 computer software. The results showed varying performances between the lines, crosses and control hybrids at the different sites. Inbred lines DMSR-8, DMSR-13, DMSR-30 and DMSR-35-5 were shown to have good combining ability while DMSR-21 and DMSR-73 showed positive specific combining ability. Selection across sites improved grain yield by 9.32% over the population mean and by 10.22% and 12.73% at Cedara and Dundee, respectively over commercial hybrids. Ranking by mean yield identified hybrids 15XH16, 15XH20 and 15XH28 at Cedara, Dundee and Ukulinga respectively, as the highest yielding hybrids for that particular environment. GGE biplot and AMMI analyses revealed that hybrids 15XH10, 15XH13, 15XH20, 15XH25, 15XH28, 15XH34 and 15XH39 were the most stable hybrids. Secondary traits were found to be associated with grain yield potential of hybrids. Ear prolificacy had the most important relationship with grain yield and was recommended for selection in grain yield improvement programs.

Description

Master of Science in Plant breeding.

Keywords

Corn -- Disease and pest resistance -- Genetic aspects., Downy mildew diseases -- South Africa., Hybrid corn -- South Africa., Theses -- Plant breeding., Maize hybrids., Genotype X environment interaction., Path coefficient analysis., Line X tester., Combining ability.

Citation

DOI