Show simple item record

dc.contributor.advisorMadaree, Anil.
dc.creatorBux, Shamin.
dc.date.accessioned2014-07-03T08:23:45Z
dc.date.available2014-07-03T08:23:45Z
dc.date.created2013
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10413/11000
dc.descriptionThesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2013.en
dc.description.abstractIntroduction Keloids are formed by the excessive production of scar tissue, which extends beyond the margins of the original injury, often resulting in lesions of grotesque dimensions. Keloids present a major dilemma to surgeons because of the high recurrence rate with recurrent growth often larger than the original keloid. The high recurrence rate and the poor response of keloids to therapy present a great challenge to surgeons. The numerous therapeutic regimens demonstrate that to date there is no single therapy that is absolutely successful. Therefore, it is necessary to comprehensively establish the pathology of keloids and to determine the aetiopathogenesis of the lesion in order to eventually provide unfailing specific effective treatment and to better understand the mechanisms regulating fibrosis in various fibroproliferative diseases. Aim To evaluate the pathology and aetiopathogenesis of keloid formation. Methods The research protocol for the study was approved by the Nelson R Mandela Faculty of Medicine Ethics Committee. Informed consent was obtained before the biopsies were taken. Keloid and non-lesional skin biopsies were obtained from thirty two patients who had multiple lesions in various locations, bringing the total number of keloids and apparently normal skin biopsies processed and examined to fifty eight. The biopsied specimens were processed for paraffin wax embedment and routine haematoxylin and eosin, differential and immunocytochemical staining. Sections were scrupulously examined using the Olympus BH-2 microscope; features pertinent to the study were photographed with the Olympus DP 10 microscope digital camera system. The stored images were studied, using the Camedia graphics processing programme. Results The results of the study showed that keloids comprise many distinct regions categorized as: the zone of hyalinising collagen bundles, fine fibrous areas, areas of inflammation, zone of dense regular connective tissue, nodular fibrous area and area of angiogenesis. Fibroblastic phenotypes present ranged from spindle, fibrohistiocytic, epitheloid, elongated flattened condensed fibroblastic cells to few wavy, fuzzy, polygonal and atrophic cell types. Immunocytochemically these cells were vimentin-positive and actin- and desmin-negative. Few myofibroblastic phenotypes were also identified and these were vimentin- and alpha smooth muscle actin-positive and desmin-negative. The fibroblastic and myofibroblastic phenotypes were in proliferative or degenerative stages and pathological features exhibited were the presence of vesicular, degenerate or calcified nuclei; nuclear and plasma membrane damage; cytoplasmic and nucleoplasmic clearing; atrophy, pyknosis and swelling. Severe, moderate to mild paravascular inflammation was observed around the microvessels of the sub-papillary plexus and within the keloid. There was compression and occlusion of small blood vessels, coagulation necrosis and dissolution of mural cells of small blood vessels and small peripheral nerves. Also present in keloids were oedematous areas, disorganised and hyalinised connective tissue fibres and increased numbers of degranulated and degranulating mast cells. Elastic fibres in keloids were minimal or absent whereas at the border of keloids there was an increase.Discussion Degenerate, occluded and compressed microvessels were a widespread pathological feature in keloids. This resulted in impaired vascular supply to each of the keloid regions which impacted directly on the pathology of keloids where degeneration and necrosis, manifesting the lack of nutrients and oxygen to tissue, were found throughout the keloid. The vascular supply was impaired because of the chronic inflammatory destruction of the microvessels and the elevated stress within keloids. Factors contributing to increased intrinsic stress were: 1) the lack of elastic fibres in keloids which decreased the elastic limit, leading to effects of excessive deformational force which were compression and stiffening of tissue; 2) the high tension skin covering keloid prone areas had low stretch and a low elastic modulus; 3). protruding hard connective tissue such as bony prominences or cartilage into the dermis of keloid prone skin; 4) contractile forces exerted by wound healing fibroblastic cells; and 5) external forces. Compression and occlusion of blood vessels induced ischaemic and reperfusion tissue injury. During the reperfusion phase blood rich in growth factors returned to tissue stimulating tissue growth. Tissue growth was also promoted by elevated internal stress which stimulated increasing levels of gene expression, collagen synthesis and mitotic activity. All these growth promoting effects resulted in keloid formation.en
dc.language.isoen_ZAen
dc.subjectScars--Prevention.en
dc.subjectHypertrophic scars.en
dc.subjectWound healing--Physiology.en
dc.subjectTheses--Physiology.en
dc.titleImmunohistochemical and ultrastructural evaluation of the pathology and aetiopathogenesis of keloid formation.en
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record