Show simple item record

dc.contributor.advisorOdindo, Alfred Oduor.
dc.contributor.advisorShimelis, Hussein A.
dc.creatorMashilo, Jacob.
dc.date.accessioned2014-06-09T12:57:13Z
dc.date.available2014-06-09T12:57:13Z
dc.date.created2013
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10413/10873
dc.descriptionThesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.en
dc.description.abstractCowpea (Vigna unguiculata (L.) Walp) is an important protein-rich grain legume of major economic importance. It is widely grown by small-scale farmers in the arid and semi-arid regions of the world where it is cultivated for its leaves, fresh immature pods and dry grains. However, it is also an underutilized grain legume. In sub-Saharan Africa where most of the cowpea is produced, drought stress is one of the major factors limiting its productivity. Despite the inherent capacity to survive drought stress, several cowpea varieties are affected by mid and late season drought. Therefore, varieties with a higher tolerance to drought stress are required to obtain higher and more stable yields. The objectives of this study were: (i) to determine morphological responses of four dual-purpose cowpea landraces to water deficits during vegetative and reproductive stages (ii) to determine physiological responses of four dual-purpose cowpea landraces to water deficits and recovery during the reproductive stage (iii) to determine yield performance of cowpea landraces after recovery from water stress and how this relates to (ii) above. Four cowpea landraces namely; Lebudu, Lehlodi, Sejwaleng and Morathathane collectedfrom Kgohloane and Ga-Mphela villages, Limpopo Province, South Africa were used in the study. Pot experiments were conducted under glasshouse conditions at the Controlled Environment Facility (CEF), University of KwaZulu-Natal. The first pot experiment evaluated the morphological responses of four cowpea landraces to water stress and recovery. The study was conducted as a single factor experiment laid out in randomized complete block design (RCBD). The treatments (four cowpea landraces) were each planted in 40 pots giving a total of 160 experimental units (drained polyethylene pots with a 5 litre capacity). Each plant in each pot was treated as a replicate. Plants were well-watered until the formation of six fully expanded trifoliates, then irrigation was withheld for 28 days to simulate drought stress during the vegetative growth. The imposition of drought stress was terminated by re-watering all plants after 28 days. The cowpea plants were re-watered sufficiently and allowed to grow until the four landraces reached 50% flowering stage. Watering was withheld again at 50% flowering for a two-week period for all the four landraces to simulate drought stress during the reproductive growth. The second experiment was conducted to investigate physiological responses of the four cowpea landraces to water stress during the reproductive stage. The experiment was laid out as a 4 x 2 factorial treatment structure in randomized complete design (CRD) with the following three factors: cowpea landraces – 4 levels (Lebudu, Lehlodi, Sejwaleng and Morathathane), water regimes – 2 levels (stressed and well-watered) treatment combinations each replicated 20 times (20 pots each containing one plant) giving a total of 160 experimental units (drained polyethylene pots with a 5 litre capacity). Data on morphological responses were collected and included: number of green vs. senesced leaves, visual assessment of leaf greenness, stem, branch greenness and survival percentage. Physiological responses to water stress were determined during the reproductive stage and included: leaf water potential, relative water content, stomatal conductance, proline content, chlorophyll content, carotenoid content, chlorophyll a content, phenolics (free and membrane-bound), total antioxidant capacity and chlorophyll fluorescence parameters (Fv/Fm). Genstat 14th edition (VSN International, UK) was used to perform analyses of variance (ANOVA) and differences between means were determined by the Least Significant Differences (LSD) at the 5% probability level. Landraces showed different morphological responses during both vegetative and reproductive growth stages. Lebudu, Lehlodi and Sejwaleng displayed a strong ability to maintain stem greenness longer as compared to Morathathane during vegetative growth. Lebudu delayed leaf senescence more than other landraces; no differences in survival were observed. All landraces survived for 28 days without water and resumed growth after re-watering. During the reproductive stage, Lebudu displayed a strong ability to maintain leaf, branches and stem greenness longer and showed relatively higher tolerance to drought stress compared to other three landraces. Water stress caused a decline in leaf water potential, relative water content, carotenoid content, chlorophyll content, stomatal conductance and increased proline content, phenolics, chlorophyll a content, total antioxidant capacity and while chlorophyll fluorescence parameter, Fv/Fm, was not affected. All landraces maintained higher relative water content above a critical threshold with Sejwaleng maintaining a significantly higher RWC (69%) than Lehlodi, Lebudu and Morathathane. Morathathane developed a more negative leaf water potential at maximum stress than Lebudu, Lehlodi and Sejwaleng. Stomatal closure was observed in all cowpea landraces during water stress, but re-opened after re-watering. Chlorophyll content was considerably reduced in Morathathane as compared to Lebudu, Lehlodi and Sejwaleng. No significant differences were observed between the cowpea landraces with respect to carotenoid content at maximum stress. Chlorophyll a content increased significantly for Morathathane as compared to Lebudu, Lehlodi and Sejwaleng. High accumulation of proline was observed for Lebudu, Lehlodi and Morathathane as compared to Sejwaleng, which showed a very slow accumulation of proline. Lebudu, Lehlodi and Sejwaleng showed an increase in phenolic compounds while a decline was observed for Morathathane. Total antioxidant capacity (TAOC) was high in all cowpea landraces during water stress. Also, all chlorophyll fluorescence parameters showed that cowpea landraces had efficient photo-protection mechanisms during drought stress. After re-watering, relative water content, leaf water potential, stomatal conductance, chlorophyll content, carotenoids, chlorophyll a, proline content and TAOC recovered and reached the same level as that of well-watered plants. All four landraces were re-watered after the imposition of stress and above ground biomass, pod mass and number and seed yield determined. Although there was a reduction in the total above-ground biomass, pod mass and number in all four landraces under water stress compared to the well–watered treatment; this was not statistically significant (P > 0.05). Furthermore, no significant differences (P > 0.05) were observed between the four landraces with respect to seed yield under stressed and well-watered conditions. This study established that cowpea landraces vary with respect to the various morphological and physiological adaptive mechanisms in response to water deficits. Such adaptive mechanisms probably ensure their survival under severe water stress conditions until the next rainfall and therefore allowing them to produce reasonably relatively higher leaf and seed yield. Detailed knowledge of these mechanisms in the landraces could be useful in the genetic enhancement and breeding for drought tolerance in the existing cowpea germplasm.en
dc.language.isoen_ZAen
dc.subjectCowpea--Drought tolerance--South Africa.en
dc.subjectCowpea--Effect of stress on--South Africa.en
dc.subjectCowpea--Varieties--South Africa.en
dc.subjectCowpea--Yields--South Africa.en
dc.subjectTheses--Crop science.en
dc.titleResponse of dual-purpose cowpea landraces to water stress.en
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record