• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School Mathematics, Statistics and Computer Science
    • Applied Mathematics
    • Masters Degrees (Applied Mathematics)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Categorical systems biology : an appreciation of categorical arguments in cellular modelling.

    Thumbnail
    View/Open
    Thesis. (493.0Kb)
    Date
    2012
    Author
    Songa, Maurine Atieno.
    Metadata
    Show full item record
    Abstract
    With big science projects like the human genome project, [2], and preliminary attempts to seriously study brain activity, e.g. [9], mathematical biology has come of age, employing formalisms and tools from most branches of mathematics. Recent results, [51] and [53], have extended the relational (or categorical) approach of Rosen [44], to demonstrate that (in a very general class of systems) cellular self-organization/self-replication is implicit in metabolism and repair/stability. This is a powerful philosophical statement and removes the need of teleological argument. However, the result carries a technical limitation to Cartesian closed categories, which excludes many mathematical languages. We review the relevant literature on metabolic-repair pathways, category theory and systems theory, before performing a critique of this work. We find that the restriction to Cartesian closed categories is purely for simplicity, and describe how equivalent arguments may be built for monoidal closed categories. Moreover, any symmetric monoidal category may be "embedded" in a closed one. We discuss how these constructions/techniques provide the formal structure to treat self-organization/self-replication in most contemporary mathematical (modelling) languages. These results signicantly soften the impact on current modelling paradigms while extending the philosophical implications.
    URI
    http://hdl.handle.net/10413/10617
    Collections
    • Masters Degrees (Applied Mathematics) [59]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV