Show simple item record

dc.contributor.advisorRigby, Bruce S.
dc.creatorGoncalves, Sergio de Freitas.
dc.date.accessioned2014-02-18T15:31:12Z
dc.date.available2014-02-18T15:31:12Z
dc.date.created2013
dc.date.issued2013
dc.identifier.urihttp://hdl.handle.net/10413/10421
dc.descriptionThesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2013.en
dc.description.abstractGenerators in an interconnected power system normally remain in synchronism with one another. However, severe faults that lead to loss of heavily loaded generators or large load blocks can cause oscillations in the generator rotor angles that are large enough to result in a pole slip in which a generator, or a group of generators, loses synchronism with the rest of the power system. When a generator pole slips and falls out-of-step with the power system, the generator and system voltages sweep past one another at a slip frequency, producing a pulsating current, which can be greater than a three-phase fault at the generator terminals. An out-of-step generator should therefore be isolated from the power system to prevent damage to the generator, generator transformer and the turbine. This dissertation analyses the dynamic performance of generator-pole-slip protection during various stable and unstable power swing events. For the purpose of this dissertation, the Siemens 7UM622 machine protection relay is used to test the response of generator-pole-slip protection. This is done in two stages, firstly, within the DigSilent PowerFactory software by modelling the Siemens 7UM622 relay and then applying simulated time domain stable and unstable power swing conditions to the relay model to evaluate its response. Secondly, the actual 7UM622 hardware relay is injected with currents and voltages, which are produced during the time domain pole-slip simulations to determine if the relay hardware device operates in accordance with the Siemens relay technical manual. The power system analysed in the dissertation was heavily interconnected and a generator pole slip was rather unlikely. If an unlikely generator pole slip were to occur when the system is operating in a normal configuration (all power station outgoing feeders in service), the generator-pole-slip protection was able to detect and disconnect the generator after a single pole-slip cycle. v The critical fault clearing time decreases when an outgoing power station feeder is out of service (n-1 contingency) and therefore the probability of a generator pole slip increases. If a generator pole slip occurs when operating the network under a n-1 contingency, the pole-slip system electrical centre is usually located within the transmission network. In practice, the generator-pole-slip protection settings that are implemented at the power station do not reach into the transmission network (zone 2 disabled). Therefore, if a pole slip were to occur under a n-1 contingency, the generator-pole-slip protection would not be able to detect this condition. The zone 2 generator-pole-slip protection should rather reach into the transmission network, but the trip should only be issued after the third or fourth pole-slip cycle to allow the transmission line out-of-step protection sufficient time to separate the network into islands. The pole-slip function of the Siemens 7UM622 relay model within DigSilent PowerFactory operated in accordance with the Siemens relay technical manual and can be used in future to optimise and test generator-pole-slip protection settings. In the majority of cases, the Siemens 7UM622 relay hardware device operated in accordance with the Siemens relay technical manual. The only time that the relay operated incorrectly was when the measured impedance trajectory of a three-phase fault lingers on the inside and outside edge of the pole-slip impedance characteristic before exiting the pole-slip impedance characteristic. The stable and unstable power swing COMTRADE files that were generated for the tests performed in this dissertation can be used in future to test the generator-pole-slip protection at Kendal power station since it is rather difficult to test the pole-slip protection function properly without a COMTRADE file.en
dc.language.isoen_ZAen
dc.subjectElectric generators.en
dc.subjectElectric generators--Alternating current.en
dc.subjectElectric power system stability.en
dc.subjectTransients (Electricity)en
dc.subjectTheses--Electronic engineering.en
dc.titleInvestigating the dynamic performance of generator-pole-slip protection.en
dc.typeThesisen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record