• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biotechnology
    • Microbiology
    • Doctoral Degrees (Microbiology)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Life Sciences
    • Biotechnology
    • Microbiology
    • Doctoral Degrees (Microbiology)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Surveillance of microbial pathogens in the Umgeni River, Durban South Africa.

    Thumbnail
    View/Open
    Thesis (7.957Mb)
    Date
    2013
    Author
    Singh, Atheesha.
    Metadata
    Show full item record
    Abstract
    This study assessed the quality of the Umgeni River in Durban South Africa seasonally from March 2011 to January 2012, according to standard protocol. Water samples were collected from Inanda dam-U5, KrantzKloof Nature Reserve-U4, New Germany-U3, Reservoir Hills –U2 and River mouth – U1 areas of the Umgeni River. A two-step tangential flow filtration (TFF) process was setup for the concentration of viruses from water samples. Virus like particles (VLPs) was detected using electron microscopy. Canonical correspondence analysis (CCA) was used to statistically evaluate the data sets. All water samples had turbidity values which exceeded the South African water quality guideline value of 0.1 NTU for turbidity. Large seasonal variations in BOD5, COD and conductivity levels were observed. Chloride concentrations were extremely high at point U1 (19234 mg/ℓ) Cl during summer. Total heterotrophic bacterial (THB) population was highest at 13.67 x 106 cfu/100ml (U1 – summer). Enterococci (EC) concentrations were detected at points U1, U2, U3, and U4 during the autumn and spring period. pH, electrical conductivity, temperature, and turbidity positively correlated with the microbial communities, and were the key parameters responsible for water pollution according to CCA. Most water samples contained high populations of somatic (659 pfu/mℓ, U1 – summer) and F-RNA coliphages (550 pfu/mℓ, U2 – summer). VLPs were detected throughout all seasons, with point U1 (summer) having the highest population of 2086 VLP/mℓ. Several presumptive viruses including Adenoviridae, Picornaviridae, Poxviridae, and Reoviridae were detected based on their morphologies. Six cell culture lines were used to determine cytopathic effect (CPE) of the VLPs. VLP samples produced CPEs on the Vero, Hek 293, Hela and A549 cell lines. Integrated cell culture (ICC) - PCR confirmed the presence of infectious VLPs in the river water samples. Adenoviruses, Enteroviruses, rotaviruses and Hepatitis B viruses were detected and quantified in all water samples by nested PCR/RT-PCR and Real-Time PCR respectively, against positive control viruses. These results indicate the potential of viruses in the water samples especially from the lower catchment areas to infect the human hosts throughout the year. These observations have public health care implications and establish a need to monitor the viral population in addition to traditional water quality indicators.
    URI
    http://hdl.handle.net/10413/10070
    Collections
    • Doctoral Degrees (Microbiology) [40]

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV