Research Articles (Research Centre for Plant Growth and Development)
Permanent URI for this collectionhttps://hdl.handle.net/10413/8208
Browse
Browsing Research Articles (Research Centre for Plant Growth and Development) by Subject "Merwilla Plumbea."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea.(Annals of Botany Company., 2010) Lux, Alexander.; Vaculık, Marek.; Martinka, Michal.; Liskova, Desana.; Kulkarni, Manoj G.; Stirk, Wendy Ann.; Van Staden, Johannes.Background and Aims. Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Methods. Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L-1 in half-strength Hoagland’s solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. Key Results. The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. Conclusions. It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.