Browsing by Author "Sheward, Daniel J."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.(Macmillan Publishers Limited., 2014) Doria-Rose, Nicole A.; Schramm, Chaim A.; Gorman, Jason.; Moore, Penelope L.; Bhiman, Jinal N.; DeKosky, Brandon J.; Ernandes, Michael J.; Georgiev, Ivelin S.; Kim, Helen J.; Pancera, Marie.; Staupe, Ryan P.; Altae-Tran, Han R.; Bailer, Robert T.; Crooks, Ema T.; Druz, Aliaksandr.; Garrett, Nigel Joel.; Hoi, Kam H.; Kong, Rui.; Louder, Mark K.; Longo, Nancy S.; McKee, Krisha.; Nonyane, Molati.; O’Dell, Sijy.; Roark, Ryan S.; Rudicell, Rebecca S.; Schmidt, Stephen D.; Sheward, Daniel J.; Soto, Cinque.; Wibmer, Constantinos Kurt.; Yang, Yongping.; Zhang, Zhenhai.; Mullikin, James C.; Binley, James M.; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Ward, Andrew B.; Georgiou, George.; Williamson, Carolyn.; Abdool Karim, Salim Safurdeen.; Morris, Lynn.; Kwong, Peter D.; Shapiro, Lawrence.; Mascola, John R.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.Item Differences in HIV-1 neutralization breadth in two geographically distinct cohorts in Africa.(Oxford University Press., 2015) Bandawe, Gama P.; Moore, Penelope L.; Werner, Lise.; Gray, Elin Solomonovna.; Sheward, Daniel J.; Madiga, Maphuti C.; Nofemela, Andile.; Thebus, Ruwayhida.; Marais, Jinny C.; Maboko, Leonard.; Abdool Karim, Salim Safurdeen.; Hoelscher, Michael.; Morris, Lynn.; Williamson, Carolyn.Abstract available in pdf.Item Evolution of an HIV glycan–dependent broadly neutralizing antibody epitope through immune escape.(Nature Publishing Group., 2012) Moore, Penelope L.; Gray, Elin Solomonovna.; Wibmer, Constantinos Kurt.; Bhiman, Jinal N.; Nonyane, Molati.; Hermanus, Tandile.; Sheward, Daniel J.; Bajimaya, Shringkhala.; Abrahams, Melissa-Rose.; Tumba, Nancy Lola.; Ping, Li-Hua.; Ngandu, Nobubelo K.; Abdool Karim, Quarraisha.; Abdool Karim, Salim Safurdeen.; Swanstrom, Ronald.; Seaman, Michael S.; Williamson, Carolyn.; Morris, Lynn.;Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.Item Features of recently transmitted HIV-1 clade C viruses that impact antibody recognition : implications for active and passive immunization.(Public Library of Science., 2016) Rademeyer, Cecilia.; Korber, Bette T. M.; Seaman, Michael S.; Giorgi, Elena E.; Thebus, Ruwayhida.; Robles, Alexander.; Sheward, Daniel J.; Wagh, Kshitij.; Garrity, Jetta.; Carey, Brittany R.; Gao, Hongmei.; Greene, Kelli M.; Tang, Haili.; Bandawe, Gama P.; Marais, Jinny C.; Diphoko, Thabo E.; Hraber, Peter.; Tumba, Nancy Lola.; Moore, Penelope L.; Gray, Glenda Elizabeth.; Kublin, James.; McElrath, Margaret Juliana.; Vermeulen, Marion.; Middelkoop, Keren.; Bekker, Linda-Gail.; Hoelscher, Michael.; Maboko, Leonard.; Makhema, Joseph.; Robb, Merlin L.; Abdool Karim, Salim Safurdeen.; Abdool Karim, Quarraisha.; Kim, Jerome H.; Hahn, Beatrice H.; Gao, Feng.; Swanstrom, Ronald.; Morris, Lynn.; Montefiori, David Charles.; Williamson, Carolyn.Abstract available in PDF file.Item HIV-1 superinfection resembles primary infection.(Oxford University Press., 2015) Sheward, Daniel J.; Ntale, Roman.; Garrett, Nigel Joel.; Woodman, Zenda L.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.Abstract available in pdf.Item Identification of broadly neutralizing antibody epitopes in 1 the HIV-1 envelope glycoprotein using evolutionary models.(Virology Journal, 2013) Lacerda, Miguel.; Moore, Penelope L.; Ngandu, Nobubelo K.; Seaman, Michael.; Gray, Elin Solomonovna.; Murrell, Ben.; Krishnamoorthy, Mohan.; Nonyane, Molati.; Madiga, Maphuti C.; Wibmer, Constantinos Kurt.; Sheward, Daniel J.; Bailer, Robert T.; Gao, Hongmei.; Greene, Kelli M.; Abdool Karim, Salim Safurdeen.; Mascola, John R.; Korber, Bette T. M.; Montefiori, David Charles.; Morris, Lynn.; Williamson, Carolyn.; Seoighe, Cathal.Background: Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine. Methods: We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope. Results: We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF) > 6), a subset of which were experimentally confirmed using site-directed mutagenesis. Conclusions: Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.Item Limited HIV-1 superinfection in seroconverters from the CAPRISA 004 Microbicide trial.(American Society for Microbiology., 2014) Redd, Andrew D.; Mullis, Caroline E.; Wendel, Sarah K.; Sheward, Daniel J.; Martens, Craig.; Bruno, Daniel.; Werner, Lise.; Garrett, Nigel Joel.; Abdool Karim, Quarraisha.; Williamson, Carolyn.; Porcella, Stephen F.; Quinn, Thomas C.; Abdool Karim, Salim Safurdeen.HIV-1 superinfection (SI) occurs when an infected individual acquires a distinct new viral strain. The rate of superinfection may be reflective of the underlying HIV risk in a population. The Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 clinical trial demonstrated that women who used a tenofovir-containing microbicide gel had lower rates of HIV infection than women using a placebo gel. Women who contracted HIV-1 during the trial were screened for the occurrence of superinfection by next-generation sequencing of the viral gag and env genes. There were two cases (one in each trial arm) of subtype C superinfection identified from the 76 women with primary infection screened at two time points (rate of superinfection, 1.5/100 person-years). Both women experienced a >0.5-log increase in viral load during the window when superinfection occurred. The rate of superinfection was significantly lower than the overall primary HIV incidence in the microbicide trial (incidence rate ratio [IRR], 0.20; P=0.003). The women who seroconverted during the trial reported a significant increase in sexual contact with their stable partner 4 months after seroconversion (P<0.001), which may have lowered the risk of superinfection in this population. The lower frequency of SI compared to the primary incidence is in contrast to a report from a general heterosexual African population but agrees with a study of high-risk women in Kenya. A better understanding of the rate of HIV superinfection could have important implications for ongoing HIV vaccine research.Item Multiple pathways of escape from HIV broadly cross-neutralizing V2-dependent antibodies.(American Society for Microbiology., 2012) Moore, Penelope L.; Sheward, Daniel J.; Nonyane, Molati.; Ranchobe, Nthabeleng.; Hermanus, Tandile.; Gray, Elin Solomonovna.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Morris, Lynn.Broadly cross-neutralizing (BCN) antibodies are likely to be critical for an effective HIV vaccine. However, the ontogeny of such antibodies and their relationship with autologous viral evolution is unclear. Here, we characterized viral evolution in CAP256, a subtype C-infected individual who developed potent BCN antibodies targeting positions R166 and K169 in the V2 region. CAP256 was superinfected at 3 months postinfection with a virus that was highly sensitive to BCN V2-dependent monoclonal antibodies. The autologous neutralizing response in CAP256 was directed at V1V2, reaching extremely high titers (>1:40,000) against the superinfecting virus at 42 weeks, just 11 weeks prior to the development of the BCN response targeting the same region. Recombination between the primary and superinfecting viruses, especially in V2 and gp41, resulted in two distinct lineages by 4 years postinfection. Although neutralization of some CAP256 clones by plasma from as much as 2 years earlier suggested incomplete viral escape, nonetheless titers against later clones were reduced at least 40-fold to less than 1:1,000. Escape mutations were identified in each lineage, either at R166 or at K169, suggesting that strain-specific and BCN antibodies targeted overlapping epitopes. Furthermore, the early dependence of CAP256 neutralizing antibodies on the N160 glycan decreased with the onset of neutralization breadth, indicating a change in specificity. These data suggest rapid maturation, within 11 weeks, of CAP256 strain-specific antibodies to acquire breadth, with implications for the vaccine elicitation of BCN V2-dependent antibodies. Overall these studies demonstrate that ongoing viral escape is possible, even from BCN antibodies.Item Potent and Broad Neutralization of HIV-1 Subtype C by Plasma Antibodies Targeting a Quaternary Epitope Including Residues in the V2 Loop.(American Society for Microbiology., 2010) Moore, Penelope L.; Gray, Elin Solomonovna.; Sheward, Daniel J.; Madiga, Maphuti C.; Ranchobe, Nthabeleng.; Honnen, William J.; Nonyane, Molati.; Tumba, Nancy Lola.; Hermanus, Tandile.; Sibeko, Sengeziwe.; Mlisana, Koleka Patience.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Pinter, Abraham.; Morris, Lynn.; Lai, Zhong.The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.Item South African HIV-1 subtype C transmitted variants with a specific V2 motif show higher dependence on α4β7 for replication.(BioMed Central., 2015) Richardson, Simone I.; Gray, Elin Solomonovna.; Mkhize, Nonhlanhla N.; Sheward, Daniel J.; Lambson, Bronwen Elizabeth.; Wibmer, Constantinos Kurt.; Masson, Lindi.; Werner, Lise.; Garrett, Nigel Joel.; Passmore, Jo-Ann Shelley.; Abdool Karim, Quarraisha.; Abdool Karim, Salim Safurdeen.; Williamson, Carolyn.; Moore, Penelope L.; Morris, Lynn.Abstract available in pdf.Item Structure and recognition of a novel HIV-1 gp120-gp41 interface antibody that caused MPER exposure through viral escape.(Public Library of Science., 2017) Wibmer, Constantinos Kurt.; Gorman, Jason.; Ozorowski, Gabriel.; Bhiman, Jinal N.; Sheward, Daniel J.; Elliott, Debra H.; Rouelle, Julie.; Smira, Ashley.; Joyce, M. Gordon.; Ndabambi, Nonkululeko.; Druz, Aliaksandr.; Asokan, Mangaiarkarasi.; Burton, Dennis R.; Connors, Mark.; Abdool Karim, Salim Safurdeen.; Mascola, John R.; Robinson, James E.; Ward, Andrew B.; Williamson, Carolyn.; Kwong, Peter D.; Morris, Lynn.; Moore, Penelope L.Abstract available in pdf.