Browsing by Author "Oyerinde, Olutayo Oyeyemi."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Channel estimation for SISO and MIMO OFDM communications systems.(2010) Oyerinde, Olutayo Oyeyemi.; Mneney, Stanley Henry.Telecommunications in the current information age is increasingly relying on the wireless link. This is because wireless communication has made possible a variety of services ranging from voice to data and now to multimedia. Consequently, demand for new wireless capacity is growing rapidly at a very alarming rate. In a bid to cope with challenges of increasing demand for higher data rate, better quality of service, and higher network capacity, there is a migration from Single Input Single Output (SISO) antenna technology to a more promising Multiple Input Multiple Output (MIMO) antenna technology. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) technique has emerged as a very popular multi-carrier modulation technique to combat the problems associated with physical properties of the wireless channels such as multipath fading, dispersion, and interference. The combination of MIMO technology with OFDM techniques, known as MIMO-OFDM Systems, is considered as a promising solution to enhance the data rate of future broadband wireless communication Systems. This thesis addresses a major area of challenge to both SISO-OFDM and MIMO-OFDM Systems; estimation of accurate channel state information (CSI) in order to make possible coherent detection of the transmitted signal at the receiver end of the system. Hence, the first novel contribution of this thesis is the development of a low complexity adaptive algorithm that is robust against both slow and fast fading channel scenarios, in comparison with other algorithms employed in literature, to implement soft iterative channel estimator for turbo equalizer-based receiver for single antenna communication Systems. Subsequently, a Fast Data Projection Method (FDPM) subspace tracking algorithm is adapted to derive Channel Impulse Response Estimator for implementation of Decision Directed Channel Estimation (DDCE) for Single Input Single Output - Orthogonal Frequency Division Multiplexing (SISO-OFDM) Systems. This is implemented in the context of a more realistic Fractionally Spaced-Channel Impulse Response (FS-CIR) channel model, as against the channel characterized by a Sample Spaced-Channel Impulse Response (SS)-CIR widely assumed by other authors. In addition, a fast convergence Variable Step Size Normalized Least Mean Square (VSSNLMS)-based predictor, with low computational complexity in comparison with others in literatures, is derived for the implementation of the CIR predictor module of the DDCE scheme. A novel iterative receiver structure for the FDPM-based Decision Directed Channel Estimation scheme is also designed for SISO-OFDM Systems. The iterative idea is based on Turbo iterative principle. It is shown that improvement in the performance can be achieved with the iterative DDCE scheme for OFDM system in comparison with the non iterative scheme. Lastly, an iterative receiver structure for FDPM-based DDCE scheme earlier designed for SISO OFDM is extended to MIMO-OFDM Systems. In addition, Variable Step Size Normalized Least Mean Square (VSSNLMS)-based channel transfer function estimator is derived in the context of MIMO Channel for the implementation of the CTF estimator module of the iterative Decision Directed Channel Estimation scheme for MIMO-OFDM Systems in place of linear minimum mean square error (MMSE) criterion. The VSSNLMS-based channel transfer function estimator is found to show improved MSE performance of about -4 MSE (dB) at SNR of 5dB in comparison with linear MMSE-based channel transfer function estimator.Item Frequency synchronization in multiuser OFDM-IDMA systems.(2013) Balogun, Muyiwa Blessing.; Mneney, Stanley Henry.; Oyerinde, Olutayo Oyeyemi.Various multiuser schemes have been proposed to efficiently utilize the available bandwidth while ensuring an acceptable service delivery and flexibility. The multicarrier CDMA became an attractive solution to the major challenges confronting the wireless communication system. However, the scheme is plagued with multiple access interference (MAI), which causes conspicuous performance deterioration at the receiver. A low-complexity multiuser scheme called the Interleave Division Multiple Access (IDMA) was proposed recently as a capable solution to the drawback in the multicarrier CDMA scheme. A combined scheme of OFDM-IDMA was later introduced to enhance the performance of the earlier proposed IDMA scheme. The multicarrier IDMA scheme therefore combats inter-symbol interference (ISI) and MAI effectively over multipath with low complexity while ensuring a better cellular performance, high diversity order, and spectral efficiency. Major studies on the OFDM-IDMA scheme emphasis only on the implementation of the scheme in a perfect scenario, where there are no synchronization errors in the system. Like other multicarrier schemes, the OFDM-IDMA scheme however suffers from carrier frequency offset (CFO) errors, which is inherent in the OFDM technique. This research work therefore examines, and analyzes the effect of synchronization errors on the performance of the new OFDM-based hybrid scheme called the OFDM-IDMA. The design of the OFDM-IDMA system developed is such that the cyclic prefix duration of the OFDM component is longer than the maximum channel delay spread of the multipath channel model used. This effectively eliminates ISI as well as timing offsets in the system. Since much work has not been done hitherto to address the deteriorating effect of synchronization errors on the OFDM-IDMA system, this research work therefore focuses on the more challenging issue of carrier frequency synchronization at the uplink. A linear MMSE-based synchronization algorithm is proposed and implemented. The proposed algorithm is a non-data aided method that focuses on the mitigation of the ICI induced by the residual CFOs due to concurrent users in the multicarrier system. However, to obtain a better and improved system performance, the Kernel Least Mean Square (KLMS) algorithm and the normalized KLMS are proposed, implemented, and effectively adapted to combat the degrading influence of carrier frequency offset errors on the OFDM-IDMA scheme. The KLMS synchronization algorithm, which involves the execution of the conventional Least Mean Square (LMS) algorithm in the kernel space, utilizes the modulated input signal in the implementation of the kernel function, thereby enhancing the efficacy of the algorithm and the overall output of the multicarrier system. The algorithms are applied in a Rayleigh fading multipath channel with varying mobile speed to verify their effectiveness and to clearly demonstrate their influence on the performance of the system in a practical scenario. Also, the implemented algorithms are compared to ascertain which of these algorithms offers a better and more efficient system performance. Computer simulations of the bit error performance of the algorithms are presented to verify their respective influence on the overall output of the multicarrier system. Simulation results of the algorithms in both slow fading and fast fading multipath scenarios are documented as well.Item Primary user emulation attack mitigation in cognitive radio networks.(2014) Orumwense, Efe Francis.; Mneney, Stanley Henry.; Oyerinde, Olutayo Oyeyemi.The rapid progress in the number of users and applications in wireless communication have led to the problem of growing spectrum scarcity in recent years. This imminent spectrum scarcity problem is in part due to a rapidly increasing demand for wireless services and in part due to the inefficient usage of currently licensed spectrum bands. Cognitive radio (CR) is a new technology that is proposed to improve spectrum efficiency by allowing unlicensed secondary users to access the licensed frequency bands without interfering with the licensed primary users. A malicious secondary user can decide to exploit this spectrum access etiquette by mimicking the spectral characteristics of a primary user, and gain priority access to a wireless channel over other secondary users. This scenario is referred to in literature as Primary User Emulation Attack (PUEA). Though quite a lot of research efforts have been focused on the detection and defense strategy of PUEA in cognitive radio networks, less attention have been given to combating and mitigating PUEA in a cooperative spectrum sensing environment. This dissertation seeks to contribute to research in the field of cognitive radio networks through an investigation into the impacts of Primary User Emulation Attacks (PUEA) on cognitive radio networks, the problem of trust amongst users in the networks and also mitigating the activities of PUEA in the network. An analytical and system model for PUEA in cognitive radio networks is presented and its impacts are also studied using Neyman-Pearson Composite Hypothesis Test. The intention is to evict malicious users from the network and maximize spectrum utilization efficiency. To achieve this, techniques to verify that the source of spectrum occupancy information is from a genuine user are proposed. In a primary user emulation attack, malicious users tend to destruct the spectrum sensing process of a cognitive radio network by imitating the primary signal and deceive other secondary users from accessing vacant frequency bands. An energy detection cooperative spectrum sensing technique is proposed to mitigate this attack. This technique assists in the reduction of errors made by secondary users in detecting primary user signals in frequency bands considering the existence of PUEA in the network. The performance of our proposed method is compared to an existing energy detection spectrum sensing method that does not consider the existence of PUEA in the network. Simulated results show that the proposed method can effectively mitigate PUEA in a cognitive radio network.