Browsing by Author "Mulangu, Chrispin Tshikomba."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Channel characterization for broadband powerline communications.(2014) Mulangu, Chrispin Tshikomba.; Afullo, Thomas Joachim Odhiambo.; Ijumba, Nelson Mutatina.The main limiting factor in broadband powerline communications is the presence of impedance discontinuities in the wired channel. This phenomenon is present in both outdoor and indoor powerline communication (PLCs) channels. It has been established that the impedance of the electrical loads and line branching are the main causes of impedance discontinuities in PLC channel networks. Accurate knowledge of the expected impedances of the corresponding discontinuity points would be vital in order to characterize the channel for signal transmission. However, the PLC channel network topologies lead to different branching structures. Additionally, the existence of a myriad of electrical loads, whose noise and impedance vary with frequency, are a motivation for a rigorous design methodology in order to achieve a pragmatic channel model. In order to develop such a channel model, an approach similar to the one applied in radio propagation channel modeling is adopted, where specific attenuation determined at a point is used in predicting the attenuation for the entire power cable length. Therefore, the powerline is modeled with the assumption of a randomly spread multitude of scatterers in the vicinity of the channel with only a sufficient number of impedance discontinuity points. The line is considered as a single homogeneous element with its length divided into a grid of small areas with dimensions that range from 0.5 to 3 mm. Thus, each small area transmits an echo and the forward scattered response gets to the receiver. With this approach, point specific attenuation along the line is proposed and used to derive the channel transfer function. Measurement results show that both the analytical specific attenuation model developed in this work and the channel transfer function are feasible novel ideas in PLC channel network characterization. It is seen from the measurements that the signal attenuation is directly proportional to the number of branches, and this is in line with the findings of previous researchers. A comparison between the measured values and the simulation results of the frequency response shows a very good agreement. The agreement demonstrates applicability of the models in a practical enviroment. Thus we conclude that the models developed do not require knowledge either of the link topology or the cable models but requires an extensive measurement campaign.Item Modelling of broadband powerline communication channels.(SAIEE Publications., 2011) Mulangu, Chrispin Tshikomba.; Afullo, Thomas Joachim Odhiambo.; Ijumba, Nelson Mutatina.This paper develops a new PLC model and investigates the impact of the load, line length, and diameter of the transmission line on the channel transfer function over the frequency range of 1-20 M Hz. The results show that with 42 degrees of freedom, the proposed model leads to an average RM SE value of approximately 5.2 dB. With the same conditions, the Phillips model leads to an average RMSE value of approximately 1.62 dB.Item Rain attenuation modelling for Southern Africa.(2008) Mulangu, Chrispin Tshikomba.; Afullo, Thomas Joachim Odhiambo.In order to address rain attenuation scattering of millimetric waves and microwave sin Botswana, we have employed a comparison technique to determine the Ro.o1 at fourteen diverse locations in Botswana. In addition we have identified two rain climatic zones for Botswana. We note that Matzler employs Mie Scattering technique to determine the specific attenuation due to rain in Central Europe. Both Matzler and Olsen use the exponential distribution of N(D) to calculate y. In this dissertation we use the Mie scattering approach, but assume several distributions, including the log-normal distribution of N(D) as expounded by Ajayi et aI., to determine y for tropical and subtropical regions of Africa. The results show that the extinction coefficients depend more strongly on temperature at lower frequencies than at higher frequencies for lognormal distribution: at selected frequencies, we record high attenuation values at rising SHF bands: at 300 GHz, tropical showers take on values of 12, 12.5, 11.9 and 14 dB/km for Gaborone, Francistown, Kasane and Selebi-Phikwe, respectively. The absorption coefficient is significant but decreases exponentially with rain temperature at lower microwave frequencies. The application of the proposed model (Continental Thunderstorm is shown using practical results from Durban) is corroborated using practical results from Durban. Further, based on attenuation measurements, it is found that the lognormal distribution is suitable for Durban at rain rates greater than or equal to 21 mm/h. At rain rates below this, the loss-Thunderstorm is the better fit. Finally in this dissertation the results show that for rainfall intensity below about 10 mm/h for Marshall-Palmer (MP), Joss-Drizzle (JD), Joss-Thunderstorm (JT) and Law-Parson (LP) distributions, and below about 4 mm/h for Continental-Showers (CS), Tropical Showers (TS), Continental Thunderstorms (CT) and Tropical Thunderstorm (TT) distributions, the specific rain backscattering follows Rayleigh scattering law where the rain drops are small with respect to the wavelength when the frequency is 19.5 GHz. At rain rates above 10 mm/h for exponential distribution, and above 4 mm/h for lognormal distribution, the specific backscattering follows Mie scattering law. When the received echo power from rain becomes significant, it contributes to the rise in the noise floor and the radar receiver can lose its target. In addition, the result shows that Mie backscattering efficiency is highest at a raindrop diameter of 4.7mm.