Browsing by Author "Louder, Mark K."
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge.(American Association for the Advancement of Science., 2017) Julg, Boris.; Tartaglia, Lawrence J.; Keele, Brandon F.; Wagh, Kshitij.; Pegu, Amarendra.; Sok, Devin.; Abbink, Peter.; Schmidt, Stephen D.; Wang, Keyun.; Chen, Xuejun.; Joyce, M. Gordon.; Georgiev, Ivelin S.; Choe, Misook.; Kwong, Peter D.; Doria-Rose, Nicole A.; Le, Khoa.; Louder, Mark K.; Bailer, Robert T.; Moore, Penelope L.; Korber, Bette T. M.; Seaman, Michael S.; Abdool Karim, Salim Safurdeen.; Morris, Lynn.; Koup, Richard A.; Mascola, John R.; Burton, Dennis R.; Barouch, Dan H.Abstract available in pdf.Item Delineating antibody recognition in polyclonal sera from patterns of HIV-1 isolate neutralization.(American Association for the Advancement of Science., 2012) Georgiev, Ivelin S.; Doria-Rose, Nicole A.; Zhou, Tongqing.; Do Kwon, Young.; Staupe, Ryan P.; Moquin, Stephanie.; Chuang, Gwo-Yu.; Louder, Mark K.; Schmidt, Stefan.; Altae-Tran, Han R.; Bailer, Robert T.; McKee, Krisha.; Nason, Martha.; O'Dell, Sijy.; Ofek, Gilad.; Pancera, Marie.; Srivatsan, Sanjay.; Shapiro, Lawrence.; Connors, Mark.; Migueles, Stephen A.; Morris, Lynn.; Nishimura, Yoshiaki.; Martin, Malcolm A.; Mascola, John R.; Kwong, Peter D.Serum characterization and antibody isolation are transforming our understanding of the humoral immune response to viral infection. Here, we show that epitope specificities of HIV-1–neutralizing antibodies in serum can be elucidated from the serum pattern of neutralization against a diverse panel of HIV-1 isolates. We determined “neutralization fingerprints” for 30 neutralizing antibodies on a panel of 34 diverse HIV-1 strains and showed that similarity in neutralization fingerprint correlated with similarity in epitope. We used these fingerprints to delineate specificities of polyclonal sera from 24 HIV-1–infected donors and a chimeric siman-human immunodeficiency virus–infected macaque. Delineated specificities matched published specificities and were further confirmed by antibody isolation for two sera. Patterns of virus-isolate neutralization can thus afford a detailed epitope-specific understanding of neutralizing-antibody responses to viral infection.Item The development of CD4 binding site antibodies during HIV-1 infection.(American Society for Microbiology., 2012) Lynch, Rebecca M.; Tran, Lillian.; Louder, Mark K.; Schmidt, Stephen D.; Cohen, Myron S.; DerSimonian, Rebecca.; Euler, Zelda.; Gray, Elin Solomonovna.; Abdool Karim, Salim Safurdeen.; Kirchherr, Jennifer.; Montefiori, David Charles.; Sibeko, Sengeziwe.; Soderberg, Kelly.; Tomaras, Georgia D.; Yang, Zhi-Yong.; Nabel, Gary J.; Schuitemaker, Hanneke.; Morris, Lynn.; Haynes, Barton F.; Mascola, John R.Broadly neutralizing antibodies to the CD4 binding site (CD4bs) of gp120 are generated by some HIV-1-infected individuals, but little is known about the prevalence and evolution of this antibody response during the course of HIV-1 infection. We analyzed the sera of 113 HIV-1 seroconverters from three cohorts for binding to a panel of gp120 core proteins and their corresponding CD4bs knockout mutants. Among sera collected between 99 and 258 weeks post-HIV-1 infection, 88% contained antibodies to the CD4bs and 47% contained antibodies to resurfaced stabilized core (RSC) probes that react preferentially with broadly neutralizing CD4bs antibodies (BNCD4), such as monoclonal antibodies (MAbs) VRC01 and VRC-CH31. Analysis of longitudinal serum samples from a subset of 18 subjects revealed that CD4bs antibodies to gp120 arose within the first 4 to 16 weeks of infection, while the development of RSC-reactive antibodies was more varied, occurring between 10 and 152 weeks post-HIV-1 infection. Despite the presence of these antibodies, serum neutralization mediated by RSC-reactive antibodies was detected in sera from only a few donors infected for more than 3 years. Thus, CD4bs antibodies that bind a VRC01-like epitope are often induced during HIV-1 infection, but the level and potency required to mediate serum neutralization may take years to develop. An improved understanding of the immunological factors associated with the development and maturation of neutralizing CD4bs antibodies during HIV-1 infection may provide insights into the requirements for eliciting this response by vaccination.Item Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.(Macmillan Publishers Limited., 2014) Doria-Rose, Nicole A.; Schramm, Chaim A.; Gorman, Jason.; Moore, Penelope L.; Bhiman, Jinal N.; DeKosky, Brandon J.; Ernandes, Michael J.; Georgiev, Ivelin S.; Kim, Helen J.; Pancera, Marie.; Staupe, Ryan P.; Altae-Tran, Han R.; Bailer, Robert T.; Crooks, Ema T.; Druz, Aliaksandr.; Garrett, Nigel Joel.; Hoi, Kam H.; Kong, Rui.; Louder, Mark K.; Longo, Nancy S.; McKee, Krisha.; Nonyane, Molati.; O’Dell, Sijy.; Roark, Ryan S.; Rudicell, Rebecca S.; Schmidt, Stephen D.; Sheward, Daniel J.; Soto, Cinque.; Wibmer, Constantinos Kurt.; Yang, Yongping.; Zhang, Zhenhai.; Mullikin, James C.; Binley, James M.; Sanders, Rogier W.; Wilson, Ian A.; Moore, John P.; Ward, Andrew B.; Georgiou, George.; Williamson, Carolyn.; Abdool Karim, Salim Safurdeen.; Morris, Lynn.; Kwong, Peter D.; Shapiro, Lawrence.; Mascola, John R.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.Item Mapping polyclonal HIV-1 antibody responses via next-generation neutralization fingerprinting.(Public Library of Science., 2017) Doria-Rose, Nicole A.; Altae-Tran, Han R.; Roark, Ryan S.; Schmidt, Stephen D.; Sutton, Matthew S.; Louder, Mark K.; Chuang, Gwo-Yu.; Bailer, Robert T.; Cortez, Valerie.; Kong, Rui.; McKee, Krisha.; O'Dell, Sijy.; Wang, Felicia.; Abdool Karim, Salim Safurdeen.; Binley, James M.; Connors, Mark.; Haynes, Barton F.; Martin, Malcolm A.; Montefiori, David Charles.; Morris, Lynn.; Overbaugh, Julie.; Kwong, Peter D.; Mascola, John R.; Georgiev, Ivelin S.Abstract available in pdf.Item Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide.(American Association for the Advancement of Science., 2017) Alam, Shabnam Munir.; Aussedat, Baptiste.; Vohra, Yusuf.; Meyerhoff, Robert Ryan.; Cale, Evan M.; Walkowicz, William E.; Radakovich, Nathan A.; Anasti, Kara.; Armand, Lawrence.; Parks, Robert.; Sutherland, Laura L.; Scearce, Richard M.; Joyce, M. Gordon.; Pancera, Marie.; Druz, Aliaksandr.; Georgiev, Ivelin S.; Von Holle, Tarra.; Eaton, Amanda.; Fox, Christopher.; Reed, Steven G.; Louder, Mark K.; Bailer, Robert T.; Morris, Lynn.; Abdool Karim, Salim Safurdeen.; Cohen, Myron S.; Liao, Hua-Xin.; Montefiori, David Charles.; Park, Peter K.; Fernández-Tejada, Alberto.; Wiehe, Kevin.; Santra, Sampa.; Kepler, Thomas B.; Saunders, Kevin O.; Sodroski, Joseph.; Kwong, Peter D.; Mascola, John R.; Bonsignori, Mattia.; Moody, Michael Anthony.; Danishefsky, Samuel.; Haynes, Barton F.Abstract available in pdf.Item New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency.(American Society for Microbiology., 2016) Doria-Rose, Nicole A.; Bhiman, Jinal N.; Roark, Ryan S.; Schramm, Chaim A.; Gorman, Jason.; Chuang, Gwo-Yu.; Pancera, Marie.; Cale, Evan M.; Ernandes, Michael J.; Louder, Mark K.; Asokan, Mangaiarkarasi.; Bailer, Robert T.; Druz, Aliaksandr.; Fraschilla, Isabella R.; Garrett, Nigel Joel.; Jarosinski, Marissa.; Lynch, Rebecca M.; McKee, Krisha.; O’Dell, Sijy.; Pegu, Amarendra.; Schmidt, Stephen D.; Staupe, Ryan P.; Sutton, Matthew S.; Wang, Keyun.; Wibmer, Constantinos Kurt.; Haynes, Barton F.; Abdool Karim, Salim Safurdeen.; Shapiro, Lawrence.; Kwong, Peter D.; Moore, Penelope L.; Morris, Lynn.; Mascola, John R.Abstract available in pdf.Item Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection.(Public Library of Science., 2016) Wagh, Kshitij.; Bhattacharya, Tanmoy.; Williamson, Carolyn.; Robles, Alexander.; Bayne, Madeleine.; Garrity, Jetta.; Rist, Michael.; Rademeyer, Cecilia.; Yoon, Hyejin.; Lapedes, Alan.; Gao, Hongmei.; Greene, Kelli M.; Louder, Mark K.; Kong, Rui.; Abdool Karim, Salim Safurdeen.; Burton, Dennis R.; Barouch, Dan H.; Nussenzweig, Michel C.; Mascola, John R.; Morris, Lynn.; Montefiori, David Charles.; Korber, Bette T. M.; Seaman, Michael S.Abstract available in PDF file.Item Potent and broad HIV-neutralizing antibodies in memory B cells and plasma.(American Association for the Advancement of Science., 2017) Williams, LaTonya D.; Ofek, Gilad.; Schätzle, Sebastian.; McDaniel, Jonathan R.; Lu, Xiaozhi.; Nicely, Nathan I.; Wu, Liming; Lougheed, Caleb S.; Bradley, Todd.; Louder, Mark K.; McKee, Krisha.; Bailer, Robert T.; O’Dell, Sijy.; Georgiev, Ivelin S.; Seaman, Michael S.; Parks, Robert J.; Marshall, Dawn J.; Anasti, Kara.; Yang, Guang.; Nie, Xiaoyan.; Tumba, Nancy Lola.; Wiehe, Kevin.; Wagh, Kshitij.; Korber, Bette T. M.; Kepler, Thomas B.; Alam, Shabnam Munir.; Morris, Lynn.; Kamanga, Gift.; Cohen, Myron S.; Bonsignori, Mattia.; Xia, Shi-Mao.; Montefiori, David Charles.; Kelsoe, Garnett.; Gao, Feng.; Mascola, John R.; Moody, Michael Anthony.; Saunders, Kevin O.; Liao, Hua-Xin.; Tomaras, Georgia D.; Georgiou, George.; Haynes, Barton F.Abstract available in pdf.Item Structure and immune recognition of trimeric pre-fusion HIV-1 Env.(Macmillan Publishers Limited., 2014) Pancera, Marie.; Zhou, Tongqing.; Druz, Aliaksandr.; Georgiev, Ivelin S.; Soto, Cinque.; Gorman, Jason.; Huang, Jinghe.; Acharya, Priyamvada.; Chuang, Gwo-Yu.; Ofek, Gilad.; Stewart-Jones, Guillaume B. E.; Stuckey, Jonathan.; Bailer, Robert T.; Joyce, M. Gordon.; Louder, Mark K.; Tumba, Nancy Lola.; Yang, Yongping.; Zhang, Baoshan.; Cohen, Myron S.; Haynes, Barton F.; Mascola, John R.; Morris, Lynn.; Munro, James B.; Blanchard, Scott C.; Mothes, Walther.; Connors, Mark.; Kwong, Peter D.The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.Item Structure of an N276-dependent HIV-1 neutralizing antibody targeting a rare V5 glycan hole adjacent to the CD4 binding site.(American Society for Microbiology., 2016) Wibmer, Constantinos Kurt.; Gorman, Jason.; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr.; York, Talita.; Schmidt, Stephen D.; Labuschagne, Phillip.; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim Safurdeen.; Mascola, John R.; Williamson, Carolyn.; Moore, Penelope L.; Kwong, Peter D.; Morris, Lynn.Abstract available in pdf.