Browsing by Author "Hiramen, Keshni."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Drug resistance and viral tropism in HIV-1 subtype C-infected patients in KwaZulu-Natal, South Africa : implications for future treatment options.(Lippincott Williams & Wilkins., 2011) Singh, Ashika.; Sunpath, Henry.; Green, Taryn N.; Padayachi, Nagavelli.; Hiramen, Keshni.; Lie, Yolanda.; Anton, Elizabeth D.; Murphy, Richard.; Reeves, Jacqueline D.; Kuritzkes, Daniel R.; Ndung'u, Peter Thumbi.Background: Drug resistance poses a significant challenge for the successful application of highly active antiretroviral therapy (HAART) globally. Furthermore, emergence of HIV-1 isolates that preferentially use CXCR4 as a coreceptor for cell entry, either as a consequence of natural viral evolution or HAART use, may compromise the efficacy of CCR5 antagonists as alternative antiviral therapy. Methods: We sequenced the pol gene of viruses from 45 individuals failing at least 6 months of HAART in Durban, South Africa, to determine the prevalence and patterns of drug-resistance mutations. Coreceptor use profiles of these viruses and those from 45 HAART-naive individuals were analyzed using phenotypic and genotypic approaches. Results: Ninety-five percent of HAART-failing patients had at least one drug-resistant mutation. Thymidine analog mutations (TAMs) were present in 55% of patients with 9% of individuals possessing mutations indicative of the TAM1 pathway, 44% had TAM2, whereas 7% had mutations common to both pathways. Sixty percent of HAART-failing subjects had X4/dual//mixed-tropic viruses compared with 30% of HAART-naïve subjects (P < 0.02). Genetic coreceptor use prediction algorithms correlated with phenotypic results with 60% of samples from HAART-failing subjects predicted to possess CXCR4-using (X4/dual/mixed viruses) versus 15% of HAART-naïve patients. Conclusions: The high proportion of TAMs and X4/dual/mixed HIV-1 viruses among patients failing therapy highlight the need for intensified monitoring of patients taking HAART and the problem of diminished drug options (including CCR5 antagonists) for patients failing therapy in resource-poor settings.Item TRIM5α and TRIM22 are differentially regulated according to HIV-1 infection phase and compartment.(American Society for Microbiology., 2014) Singh, Ravesh.; Patel, Vinod B.; Mureithi, Marianne W.; Naranbhai, Vivek.; Ramsuran, Duran.; Tulsi, Sahil.; Hiramen, Keshni.; Werner, Lise.; Mlisana, Koleka Patience.; Altfeld, Marcus.; Luban, Jeremy.; Kasprowicz, Victoria.; Dheda, Keertan.; Abdool Karim, Salim Safurdeen.; Ndung'u, Peter Thumbi.The antiviral role of TRIM E3 ligases in vivo is not fully understood. To test the hypothesis that TRIM5α and TRIM22 have differential transcriptional regulation and distinct anti-HIV roles according to infection phase and compartment, we measured TRIM5α, TRIM22, and type I interferon (IFN-I)-inducible myxovirus resistance protein A (MxA) levels in peripheral blood mononuclear cells (PBMCs) during primary and chronic HIV-1 infection, with chronic infection samples being matched PBMCs and central nervous system (CNS)-derived cells. Associations with biomarkers of disease progression were explored. The impact of IFN-I, select proinflammatory cytokines, and HIV on TRIM E3 ligase-specific expression was investigated. PBMCs from individuals with primary and chronic HIV-1 infection had significantly higher levels of MxA and TRIM22 than did PBMCs from HIV-1-negative individuals (P < 0.05 for all comparisons). PBMCs from chronic infection had lower levels of TRIM5α than did PBMCs from primary infection or HIV-1-uninfected PBMCs (P = 0.0001 for both). In matched CNS-derived samples and PBMCs, higher levels of MxA (P = 0.001) and TRIM5α (P = 0.0001) in the CNS were noted. There was a negative correlation between TRIM22 levels in PBMCs and plasma viral load (r = -0.40; P = 0.04). In vitro, IFN-I and, rarely, proinflammatory cytokines induced TRIM5α and TRIM22 in a cell type-dependent manner, and the knockdown of either protein in CD4(+) lymphocytes resulted in increased HIV-1 infection. These data suggest that there are infection-phase-specific and anatomically compartmentalized differences in TRIM5α and TRIM22 regulation involving primarily IFN-I and specific cell types and indicate subtle differences in the antiviral roles and transcriptional regulation of TRIM E3 ligases in vivo.