Browsing by Author "Habib, Saffiya."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Anti-c-myc cholesterol-based lipoplexes: development, characterisation and evaluation as Onconanotherapeutic agents in vitro.(2018) Habib, Saffiya.; Singh, Moganavelli.Strategies aimed at inhibiting the expression of the c-myc oncogene could provide the basis for alternative cancer treatment. In this regard, silencing c-myc expression using small interfering RNA (siRNA) is an attractive option. However, the development of a clinically viable, siRNAbased, c-myc silencing system is largely dependent upon the design of an appropriate siRNA carrier that can be easily prepared. Nanostructures formed by the electrostatic association of siRNA and cationic lipid vesicles represent uncomplicated, well-recognised siRNA delivery systems. Therefore, this study has focused on traditional cationic liposomes as the foundation for the development of a simple, but effective anti-c-myc onconanotherapeutic agent. Novel liposome formulations contained equimolar quantities of the cytofectin, N,Ndimethylaminopropylamidosuccinylcholesterylformylhydrazide (MS09), and cholesterol (Chol); with or without 2 mol % pegylation. Liposomes which contained dioleoylphosphatidylethanolamine (DOPE) as the co-lipid were included for comparative purposes. Pegylated and non-pegylated MS09/Chol (1:1) suspensions were reproducibly prepared by lipid film hydration to give unilamellar vesicles that were stable for at least 10 months at 4 ˚C. Liposomes successfully bound siRNA to form lipoplexes of less than 200 nm in size, with zeta potentials between -16 and -44 mV. These assumed globular and bilamellar structures in which siRNA was partially protected. Although all formulations were well tolerated at ≤14 nM siRNA, pegylation severely inhibited siRNA delivery in cancer cell lines, MCF-7 and HT-29, which overexpress c-myc. The non-pegylated MS09/Chol (1:1) lipoplex, at the MS09:siRNA (w /w) ratio of 16:1, was most effectively taken up by MCF-7 and HT-29 cells, with negligible effect in non-transformed cells when applied at 12 nM siRNA. Lipoplexes directed against the c-myc transcript (anti-c-myc siRNA), mediated a dramatic reduction in c-myc mRNA and protein levels. This was accompanied by a loss of migratory potential and apoptotic cell death. Moreover, oncogene knockdown and anti-cancer effects were superior to that of a commercially available transfection reagent, Lipofectamine™ 3000. Although the DOPE-containing counterpart performed with iii comparable efficacy under standard in vitro conditions, it was incapable of siRNA delivery at physiological serum concentration. Hence, the anti-c-myc MS09/Chol (1:1) lipoplex reported exemplifies a straightforward anti-cancer agent that warrants further investigation in vivo.Item Galactosylated liposomes with proton sponge capacity : a novel hepatocyte-specific gene transfer system.(2012) Habib, Saffiya.; Singh, Moganavelli.; Ariatti, Mario.Hepatocyte-directed liposomal gene delivery systems have received much attention in view of the present lack of suitable treatment alternatives for several liver-associated disorders. While targeting of liposomes to the asialoglycoprotein receptor (ASGP-R), nearly-exclusive to hepatocytes, is a well-documented means of achieving cell-specificity, several intra- and extracellular barriers reduce the efficacy of liposomal gene transfer. These include the aggregation and opsonisation of lipoplexes by serum components; and endo/lysosomal degradation of internalised DNA. This study has attempted to address the individual concerns by modifying hepatotropic liposomes with a steric stabilising, polyethylene glycol (PEG) shroud, and an endosomal escape-inducing proton sponge moiety. Novel galactosylated (SH02) and imidazolylated (SH04) cholesterol derivatives were successfully synthesised with the aim of conferring the respective functions of ASGP-R-specificity and proton sponge capability upon cationic liposome formulations. The individual derivatives afforded stable, unilamellar vesicles (< 200 nm, Z-average diameter) when incorporated at 10 % on a molar basis with the cytofectin, 3β[N-(N',N'-dimethylaminopropane)-carbamoyl] cholesterol (Chol-T) and co-lipid, dioleoylphosphatidylethanolamine (DOPE). Modification of these formulations with 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000] (DSPEPEG₂₀₀₀), at 5 mol %, gave smaller vesicles (< 110 nm, Z-average diameter) and moderately reduced the instability associated with the combination of both SH02 and SH04 in a single formulation. Individual preparations formed electrostatic complexes with pCMV-luc plasmid DNA, as demonstrated by gel retardation assays and electron microscopy. Furthermore, the liposomes afforded some protection to the DNA cargo against serum nuclease attack during a 4 hour-long exposure to foetal calf serum at 37 °C. However, the DNA-binding and protecting capabilities of the liposomes were reduced upon addition of the PEG coating. Growth inhibition assays showed that lipoplexes derived from individual formulations were well tolerated by human hepatocyte-derived, HepG2, and embryonic kidney, HEK293, cell lines. Expression of the luciferase transgene mediated by non-pegylated formulations containing SH02 was significantly higher in hepatocytes than in the ASGP-R-negative, kidney cells. Furthermore, receptor-mediated internalisation of non-pegylated, galactosylated carriers by hepatocytes was demonstrated by the gross inhibition of transfection in the presence of excess asialofetuin, a natural ligand to the ASGP-R. Liposome acid titration profiles highlighted the endosomal pH-buffering capacity afforded by SH04. However, the imidazolylated lipid enhanced the transfection activity of the non-sterically stabilised Chol-T/DOPE system, but not that of its targeted counterpart, and only with respect to HEK293 cells. Finally, pegylation reduced the transfection capability of liposomes by at least three orders of magnitude in both cell lines. The results suggest that further optimisation of liposome composition is necessary in order to achieve a liposomal system that simultaneously embodies hepatocyte-targeting, proton sponge and long-circulating properties.