Browsing by Author "Ghebrehiwot, Habteab Mesghina."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The effects of burning and mowing on microclimate and soil resources and implications for species change in the southern tall grassveld of KwaZulu-Natal.(2004) Ghebrehiwot, Habteab Mesghina.; Kirkman, Kevin Peter.Promotion of a predictive understanding of plant community response to various forms, frequencies and seasons of disturbance, either through the direct physical effect on biota and or indirect effect on plants, through modification of microclimate and soil attributes is currently a major goal in plant ecology. In particular, the effect of disturbance on altering the ratio between available light and nutrients and their resultant effect on growth, shoot/root allocation, and thus community composition has gained considerable recognition in connection with the mechanisms of plant succession under a popular heading "the resource ratio hypothesis of plant succession". Contemporary and long-term (>50 years) burning and mowing experiments in KwaZulu-Natal (KZN) provide important sites for investigation that in the mesic grasslands of KZN, community composition changes in response to the frequency, time and type of disturbances such as burning, mowing and veld fertilization. However, the relationship between disturbance-resource-plant traits and their interactive role in species change is virtually unknown. This study sought to improve understanding of mesic grassland dynamics in. KZN, using short-term pot and plot experiments. The principal objectives were: 1) by subjecting plants to different levels of resources viz. light, nutrients, water and cutting to determine the relative above and below-ground growth performances (biomass allocation) of species from contrasting habitat preference in KZN, which implies their relative competitive ability for limiting resources and tolerance to cutting, 2) by using a short-term (one-season period) burning and mowing experiment to determine the effect of different veld management practices on microclimate and availability of soil resources and their subsequent effect on plant growth performances, 3) testing the relative shade tolerance of representative species from contrasting habitat preferences, 4) by combining the outcomes from these experiments, to provide a general synthesis concerning species' response to disturbance/resource which further signifies species change. The hypothesis that competitive ability as a function of biomass allocation is fertility dependent was supported by a pot experiment. In low nutrient treatments short grass species that predominate infertile soils in KZN viz. Aristida funcifarmis and Themeda triandra attained double the shoot biomass, more than double root biomass, initiated more tillers and re-grew better (after cutting) than those inherently tall species that predominate fertile sites viz. Eragrostis curvula and Hyparrhenia hirta. In contrast, in high nutrient treatments, tall species attained far higher shoot biomass and grew taller in height. Interestingly, short species had a smaller shoot: root ratio than tall species, consistent with the prediction of the resource ratio hypothesis. However, no evidence was obtained suggesting that tall species were more shade tolerant than short species. A field-based shade experiment rather showed that, those species that initiate tillers below-ground viz. Aristida junciformis, Eragrostis curvula and Tristachya leucothrix were more shade tolerant than those species that initiate tillers above-ground viz. Hyparrhenia hirta and Themeda triandra. On the other hand, the effect of disturbance/resource relationship in influencing the growth (biomass production, growth rate, and basal circumference) of contrasting species was examined by conducting a short-term (one season) burning and mowing experiment. The effect of disturbance, its form and frequency through its effect on light and soil moisture was able to account for a substantial difference in species vigour, which can potentially impact community composition. Short species (Themeda triandra and Tristachya leucothrix) showed their highest biomass production and higher basal circumference enlargement in burnt summer mown sites, whereas medium to tall species (Aristida junciformis, Eragrostis curvula and Hyparrhenia hirta) were less tolerant to summer mowing. Aristidajunciformis and Eragrostis curvula appeared to be more vigorous (both in terms of above-ground biomass production and growth rate) in burnt but not mown and control treatment respectively. High biomass and litter accumulation on sites protected from disturbance appeared to have a large influence on species vigour. Species such as Aristida junciformis, Eragrostis curvula and Tristachya leucothrix had high tolerance to litter accumulation while in contrast Hyparrhenia hirta and Themeda triandra were more vulnerable. In total this study has revealed that the association of some short species e.g. Themeda triandra with the reccurrence of disturbance is mainly due to increases in light availability and lowered dominance from tall species in frequently disturbed sites rather than nutrient related. However, this study has revealed that there are some indications whereby the notion that the inverse relationship between available light and nitrogen are important driving variables in species change is an important working theory in the mesic grassveld of KZN.Item The role of fire and fire-related factors on germination and growth of grassland species.(2010) Ghebrehiwot, Habteab Mesghina.; Van Staden, Johannes.; Kirkman, Kevin Peter.Fire, natural or of anthropologic origin is a recurrent phenomenon in South African mesic grasslands. The species composition of these grasslands is sensitive to fire frequency and there exists a permanent fire-species relationship syndrome. The shift follows a general trend where, in the absence of fire for longer periods, the native grass species, possibly the most economically important grass species, give space to relatively less desirable and invasive species accompanied by significant decline in basal cover. Though much is known as to how the floristic composition of the grassland changes in response to fire, the underlying mechanisms responsible for changes in plant vigour and species composition are not fully understood. There exists limited information on germination requirements of the local flora and how recruitment of the species is influenced by fire, fire-related factors and the interaction of these factors among themselves is virtually unknown. Since the discovery by DE LANGE and BOUCHER (1990), plant-derived smoke is being widely studied as an important germination cue and the theme has been the subject of intense experimental research and theoretical work. Germination studies conducted on South African Fynbos, Californian Chaparral, and Australian species have illustrated the widespread ability of plant-derived smoke in promoting germination of species from both fire and non-fire prone habitats. Studies have also showed that plant-derived smoke plays a significant role in vegetative growth of many plants including horticultural and agricultural crops, though mechanisms of smoke action in enhancing germination and promoting plant growth are still under active research. This study sought to gain insight into the role of fire and fire-related cues and other related factors on germination and seedling growth of key grass species from fire-prone grassland in South Africa. In this study, various investigations were conducted on different aspects related to smoke-induced seed germination. Furthermore, in depth examinations were conducted on the effects of fire-related factors such as smoke, heat, soil and nutrients on seed germination and seedling growth of representative key mesic grassland species from South Africa. Laboratory-based germination and vigour experiments were conducted using smoke solutions. The aim was to examine if the strong fire-species relationship syndrome we encounter in post-fire mesic grassland in South Africa is related to the effect of plant-derived smoke on germination and seedling growth. In addition, the interaction of plant-derived smoke solutions with temperature was examined by incubating seeds at a range of temperatures. Treating seeds with smoke-water and butenolide, the germination rate (GR) and final germination percentage (FGP) were greater in 3 of the 6 species. Themeda triandra Forssk. and Tristachya leucothrix Trin. ex Nees showed the greatest response, with final germination increased from 43% to 67% and 35% to 63% respectively. These smoke solutions have also significantly enhanced germination in Eragrostis tef (Zucc.) Trotter from 62% to 80%. The degree of responsiveness varied from species to species and across different temperatures. Findings from this study suggested that plant-derived smoke and its interaction with temperature significantly influence the germination and seedling growth of the South African mesic grassland species, which can further impact on the grassland composition. To characterise the role of plant-derived smoke on certain economically important seed traits, the effect of smoke-water and a smoke-isolated butenolide on seed germination and seedling growth of Eragrostis tef (grass species which has moderately good tolerance to east African drought) was investigated at a range of temperatures, light conditions and osmotic potentials. Smoke-water (1:500 v/v) and butenolide (10ˉ⁸ M) treatment of the seeds increased percentage germination, seedling vigour and imbibition from high to low osmotic potential. These results suggested that smoke solutions have characteristics with overriding effects toppling stresses exerted from high temperature and low osmotic potential, thereby widening the temperature and moisture zone over which germination can occur. Furthermore, these findings suggested that the mode of smoke action in promoting seed germination is likely to be linked to the role of smoke in facilitating water uptake by seeds (imbibition). A simple and rapid bioassay was implemented to detect the germination activity of extracts from soils in pre/post-burn status. Soil samples taken from burnt, unburnt and adjacent plots at depths of 0-2, 2-4, 4-6 and 6-8 cm before and after burning mesic grassland in South Africa were analysed for germination activity over an eight-week period. Soil samples were extracted using dichloromethane and bioassayed using Grand Rapids lettuce (Lactuca sativa L.) achenes. The Grand Rapids lettuce seeds exhibited several-fold greater germination percentages when treated with extracts from burnt soil compared to the other plots. The magnitude of such an activity declined through time since burn. The Grand Rapids lettuce seeds also showed significantly greater germination percentage when treated with unburnt soil extracts compared to the control (distilled water) which indicates the existence of other factors controlling germination in unburnt soil. Germination percentage was negatively influenced in the adjacent plots which reflected the inhibitory role of smoke on adjacent plots neighbouring the burn. Findings from this study suggested that the germination activity of a burning plant-material (smoke) indeed diffuses into the soil and its persistence declines with time. Furthermore, the findings implied that fire and smoke may significantly influence the germination of the soil seed bank of mesic grassland in South Africa. The effect of smoke solutions of various concentrations and their interaction with soil macronutrients NPK in influencing seedling growth of three selected grass species namely, Eragrostis curvula, Panicum maximum and Themeda triandra was investigated. These grass species were selected on the basis of the contrasting response they previously showed to smoke treatments. Results showed that the interaction between species, treatment and nutrients for seedling vigour index was highly significant (P < 0.001). In the absence of NPK elements, the smoke solutions generally enhanced seedling growth in Themeda triandra, while suppressing seedling vigour indices of Eragrostis curvula and Panicum maximum. It is ecologically significant that not only smoke but also its interaction with soil macronutrients appears to be important in structuring the post-fire regeneration and colonisation processes. To examine the effect of fire-associated cues of smoke and high temperature on germination and seedling emergence from the mesic grassland soil seed bank in South Africa, and disentangle responsible factors, the effect of heat and smoke-water on seedling emergence and the resultant effect on biomass production was examined in a greenhouse tray experiment over 90 days. Soil seed bank samples obtained from 0-5 cm top soil were treated with smoke-water solution (SW 1:500 v/v), heat (H = 100 °C for 15 min) and heat + smoke-water (H = 100 °C for 15 min + SW = 1:500 v/v) combined. Significantly, the highest number of seedlings emerged from soil seed bank samples treated with heat + smoke-water combined followed by smoke-water alone. Heat + smoke-water treatment of soil seed bank samples also significantly enhanced the rate of seedling emergence and total dry biomass production. Heat treatment by itself was not statistically different from the control in many respects. Generally, these results suggest that both heat and smoke are important germination cues and play a curial role on germination and seedling emergence from the mesic grassland soil seed bank. A greater number of fire-loving Themeda triandra seedlings emerged from soils treated with smoke, though this was not statistically significant. Seedling emergence indicators showed that seedling emergence was favoured more by smoke and smoke + heat treatments compared to the control. Seedling growth indicators also showed that soil samples treated with smoke or smoke + heat combined produced significantly higher biomass than untreated samples. In general, findings from this comprehensive study suggest that plant-derived smoke and its interaction with temperature (heat) and soil nutrients significantly influences seed germination and seedling growth of South African mesic grassland species differently, this can further influence the grassland composition. The association of certain fire-climax species with the re-occurrence of fire can partly be explained due to the association of such species with fire-induced changes in the habitat. Post-fire conditions of low nutrient (NPK) availability, presence of high heat and smoke cues in the habitat may favour the competitive ability of native short and smoke-responsive species such as Themeda triandra and Tristachya leucothrix over those characteristic species of fertile habitats such as Eragrostis curvula and other non-smoke-responsive species.