Browsing by Author "Desai, Rizwana."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item The elucidation of the possible mechanism of vancomycin-resistance in selected streptococcal and enterococcal species.(2005) Desai, Rizwana.; Beukes, Mervyn.Three Streptococcal strains: S. milleri P213, S. milleri P35 and S. milleri B200 and three enterococcal strains: E. faecalis 123, E. faecalis 126 and E. faecium were used to test for vancomycin resistance. Two strains were used as reference strains that were already characterized as vancomycin resistant. E. faecium BM4147 was used as a VanA control and E. faecalis ATCC was used as a VanB control. Susceptibility of each strain to this antibiotic was tested by disk-diffusion assay and the MIC values for the strains were found to be between 5 - 10 ug/ml and for the VanA control, the MIC was > 64 ug/ml and for the VanB control was 32 ug/ml. These MIC values indicate that S. milleri P213, S. milleri P35, S. milleri B200, E. faecalis 123, E. faecalis 126, and E. faecium are all of the VanC phenotype. All strains were tested for lysis by means of addition of vancomycin (10 ug/ml) to the bacterial cultures. Lytic curves were constructed and the VanB control was found to be most autolytic upon addition of vancomycin and E. faecalis 123 was the least autolytic. However, under normal conditions in phosphate buffer, lytic curves showed that S. milleri P213 was the most autolytic and the VanA control, the least autolytic. PCR assays were performed to detect specific antibiotic resistant genes. Primers were selected from Dukta-Malen et al., 1995. The VanA primer yielded amplification of 732 bp for only the VanA control DNA and the VanB primer set yielded products for the VanB control DNA. S. milleri P213, P35, B200 and E. faecalis 123 and 126, and E. faecium DNA were amplified with the VanC primers. This supports the results obtained in MIC that these strains are possibly VanC resistant strains. Amplified VanA control and that of E. faecalis 126 were thereafter sequenced. VanA control amplicon was correctly amplified since it showed homology to E. faecium BM4147 as well as the VanB amplicons which was found to be homologous to the transposon Tn1549 found on the well-characterized E. faecalis strain which is known to harbour the VanB vancomycin-resistant genes. Whilst E. faecalis 126 which represented the VanC phenotype showed 96% homology to E. gallinarum BM4147 which is a well-characterized glycopeptide-resistant enterococci belonging to the VanC phenotype. Southern blots were performed using specific primers as a probe to verify whether the gene sequences for the specific genotype were present in these strains and results confirmed those found in the PCR assays and in DNA sequencing. The peptidoglycan precursors of each strain were arrested in vancomycin (20 ug/ml) to block transpeptidation and transglycosylation steps of peptidoglycan synthesis and bacitracin (100 ug/ml) was used to amplify precursors at the transglycosylation step. Precursors were extracted and analysed by reverse-phase HPLC. UDP-MurNAc-tetrapeptides cell wall precursors, which are found abundantly in vancomycin-resistant strains, were found in large proportions in all strains, except in E. faecalis 123 when arrested with vancomycin. This precursor has a noticeably decreased affinity for vancomycin, hence contributing to its resistance. The precursor accumulated when arrested with bacitracin, was, UDPMurNAc-tetrapeptide in all strains except in E. faecalis 126. UDP-MurNAc-pentapeptides were also found in moderate amounts in most strains. The molecular masses of the peptidoglycan precursors obtained from mass spectrometry correctly identified them. This confirmed that the bacterial strains investigated were in fact resistant to the antibiotic vancomycin and this study shows that results obtained from conventional phenotypical screening methods reliably correlated with the genotypes classified using more advanced techniques such as PCR, southern blot/hybridisation and DNA sequencing.