Browsing by Author "Bredell, Helba."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Adaptive changes in HIV-1 subtype C proteins during early infection are driven by changes in HLA-associated immune pressure.(Elsevier., 2009) Treurnicht, Florette K.; Seoighe, Cathal.; Martin, Darren Patrick.; Wood, N.; Abrahams, Melissa-Rose.; de Assis Rosa, Debra.; Bredell, Helba.; Woodman, Zenda.; Hide, Winston.; Mlisana, Koleka Patience.; Abdool Karim, Salim Safurdeen.; Gray, Clive M.; Williamson, Carolyn.It is unresolved whether recently transmitted human immunodeficiency viruses (HIV) have genetic features that specifically favour their transmissibility. To identify potential “transmission signatures”, we compared 20 full-length HIV-1 subtype C genomes from primary infections, with 66 sampled from ethnically and geographically matched individuals with chronic infections. Controlling for recombination and phylogenetic relatedness, we identified 39 sites at which amino acid frequency spectra differed significantly between groups. These sites were predominantly located within Env, Pol and Gag (14/39, 9/39 and 6/39 respectively) and were significantly clustered (33/39) within known immunoreactive peptides. Within 6 months of infection, we detected reversion-to-consensus mutations at 14 sites and potential CTL escape mutations at seven. Here we provide evidence that frequent reversion mutations probably allows the virus to recover replicative fitness which, together with immune escape driven by the HLA alleles of the new hosts, differentiate sequences from chronic infections from those sampled shortly after transmission.Item Rapid, complex adaption of transmitted HIV-1 full-length genomes in subtype C-infected individuals with differing disease progression.(Wolters Kluwer Health., 2013) Abrahams, Melissa-Rose.; Treurnicht, Florette K.; Ngandu, Nobubelo K.; Goodier, Sarah A.; Marais, Jinny C.; Bredell, Helba.; Thebus, Ruwayhida.; de Assis Rosa, Debra.; Seoighe, Cathal.; Abdool Karim, Salim Safurdeen.; Gray, Clive M.; Williamson, Carolyn.; Mlisana, Koleka Patience.Objective(s): There is limited information on full-length genome sequences and the early evolution of transmitted HIV-1 subtype C viruses, which constitute the majority of viruses spread in Africa. The purpose of this study was to characterize the earliest changes across the genome of subtype C viruses following transmission, to better understand early control of viremia. Design: We derived the near full-length genome sequence responsible for clinical infection from five HIV subtype C-infected individuals with different disease progression profiles and tracked adaptation to immune responses in the first 6 months of infection. Methods: Near full-length genomes were generated by single genome amplification and direct sequencing. Sequences were analyzed for amino acid mutations associated with cytotoxic T lymphocyte (CTL) or antibody-mediated immune pressure, and for reversion. Results: Fifty-five sequence changes associated with adaptation to the new host were identified, with 38% attributed to CTL pressure, 35% to antibody pressure, 16% to reversions and the remainder were unclassified. Mutations in CTL epitopes were most frequent in the first 5 weeks of infection, with the frequency declining over time with the decline in viral load. CTL escape predominantly occurred in nef, followed by pol and env. Shuffling/toggling of mutations was identified in 81% of CTL epitopes, with only 7% reaching fixation within the 6-month period. Conclusion: There was rapid virus adaptation following transmission, predominantly driven by CTL pressure, with most changes occurring during high viremia. Rapid escape and complex escape pathways provide further challenges for vaccine protection.