Electrical Engineering
Permanent URI for this communityhttps://hdl.handle.net/10413/6530
Browse
Browsing Electrical Engineering by Author "Adewolu, Babatunde Olusegun."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Enhancement of deregulated and restructured power network performance with flexible alternating current transmission systems devices.(2020) Adewolu, Babatunde Olusegun.; Saha, Akshay Kumar.The increase in power transactions, consequent open access created by deregulation and restructuring has resulted into network operation challenges including determination as well as enhancement of available transfer capability (ATC), and congestion management among others. In this study, repeated alternating current power flow (RACPF) approach was implemented for determination of ATC. ATCs for inter-area line outage and generator outage contingency conditions were obtained and analyzed. Analyses of most severe line outage contingencies resulting from evaluation of different performance index (PI) ranking methods were carried out for severe line outage contingency identification. A comprehensive review of FACTS controllers with their various background, topological structures, deployment techniques and cutting-edge applications was carried out for network performance enhancement. In addition, different placement methods were investigated for optimal performance evaluation of FACTS devices. Following this, comparative performance of static var compensator (SVC) and thyristor-controlled series compensator (TCSC) models for enhancement of ATC, bus voltage profile improvement and real power loss minimization was investigated. In addition, particle swarm optimization (PSO) and brain-storm optimization algorithms (BSOA) were engaged for optimum setting of FACTS devices through multi-objective problem formulation and allocation purposes. Thereafter, sensitivity-based technique involving incorporation of proposed FACTS device loss with the general loss equation for the determination of optimum location with same objectives was developed and TCSC location was established based on this sensitivity factors analyses, obtained from partial derivatives of the resultant loss equations with respect to control parameters. Subsequently, investigation and analyses of capability of an optimized VSC-HVDC transmission system in enhancing power network performance were conducted. Furthermore, this optimized VSC-HVDC transmission system was applied for mitigation of bus voltage and line thermal limit violation as a result of n-1-line outage contingency. All these investigations and analyses were implemented for bilateral, simultaneous and multilateral transactions as characterized by network liberalization and IEEE 5 and 30 bus networks were used for implementation in MATLAB environment. RACPF method found to be more accurate especially when compared with other methods with 11.574 MW above and 29.014 MW below recorded ATC values. Voltage and real power PI have also been proven to be distinctly dissimilar in severe contingency identification. In placement method comparison however, disparities in ATC enhancement ranges between 2% and 85% were achieved while real power loss minimization of up to 25% was obtained for different methods. Real power loss minimization of up to 0.06 MW and voltage improvement of bus 21 to 30 were achieved with SVC, while ATC enhancement of up to 14% were recorded for both devices. However, BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparison of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique. Sensitivity based placement technique resulted into ATC enhancement of more than 60% well above the values obtained when TCSC was placed with thermal limit method. In addition, a substantial bus voltage improvement and active power loss reduction were recorded with this placement method. With incorporation of a VSC-HVDC based transmission system into ac network however, there was an improvement in power flow up to 15.66% corresponding to 46 MW for various transactions, transmission line power loss minimization up to 0.38 MW and bus voltage profile deviation minimization. Besides, automatic alleviation of violated thermal and voltage limits during contingency present VSC-HVDC system as a solution for network performance optimization especially during various transactions occasioned by unbundling power processes. Therefore, ATCs were properly enhanced, bus voltage profile improved, and system real power loss minimized. Likewise, HVDC system enhanced network performance and automatically alleviated violated thermal and voltage limits during contingency.