School of Agricultural, Earth and Environmental Sciences
Permanent URI for this communityhttps://hdl.handle.net/10413/6523
Browse
Browsing School of Agricultural, Earth and Environmental Sciences by Author "Abezghi, Tekeste Weldegabrial."
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Estimation of reference evaporation and comparison with ET-gage evaporimeter(2003) Abezghi, Tekeste Weldegabrial.; Savage, Michael John.Accurate estimation of reference evaporation is necessary for the estimation of actual evaporation for irrigation and water resource management purposes. Estimation of reference evaporati~n using the Penman-Monteith method using automatic weather station (AWS)measurements requires the available energy to be accurately estimated. The available energy of short grass of 0.12 m was measured using a component net radiometer and soil heat flux plate measurements at the Faculty of Sciences and Agricultural (Agrometeorological station, University of Natal, Pietermaritzburg, latitude ~29.79 oS, longitude ~ 30.95 °E, altitude ~ 650 m). In an attempt to evaluate the accuracy of commonly used procedures of estimating available energy, estimates of net irradiance (from net long wave irradiance and reflection coefficient estimate) and soil heat flux density were compared to the actual measurements. The linear approximation of atmosphere minus crop surface emittance based on air temperature was compared with measured net long wave irradiance and similar empirical formulations. The underestimation of the measured net long wave irradiance was observed using the linear approach. Furthermore, a plot of measured clear sky net long wave irradiance and air temperature showed a logarithmic relation. The estimated reflected solar irradiance was overestimated for the reference crop. The measured soil heat flux density was observed to vary not only with net irradiance but also with cloudiness, wind speed and soil water content. The soil heat flux density measured with plates was noticed to follow the measured net irradiance. The sensitivity of Penman-Monteith latent heat estimate was investigated for the use of estimated reflection coefficient and soil heat flux density as well as ignored soil heat flux density. Results showed the latent heat estimate to be greater when soil heat flux density was ignored. Reduced set assumptions of Penman-Monteith were assessed usmg the microclimatic measurements. The grass reference evaporation estimate using estimated water vapour pressure from the pervious day minimum air temperature and approximated wind speed were found to be seasonal and procedure dependent. The hourly-reduced set estimate of reference evaporation was in good agreement with the grass Penman-Monteith estimate. The estimated daily water vapour pressure underestimated the daily grass Penman-Monteith estimate. The sensitivity of the reduced set reference evaporation estimate was compared for the two values of approximated wind speeds. The assumption of 2 m S-1 wind speed gave a relatively better result. The sensitivity of the surface temperature energy balance (STEB) estimate of reference evaporation was investigated using two different atmospheric stability procedures. The evaporation estimate agreement and performance of the technique were found to vary depending on the stability correction procedure. The Monteith (1973) correction procedure was observed to be more sensitive to a higher surface-air temperature difference. The Monteith (1973) procedure was found to underestimate the reference evaporation and this resulted in a lower correlation coefficient. The uncorrected and Campbell and Norman (1998) stability corrected procedure of STEB estimate overestimated the reference evaporation but resulted in good agreement with actual reference evaporation. The use of estimated available energy using the STEB method resulted in a 7 % overestimate of measured available energy. Different designs of atmometers have been used to measure evaporation. The less expensive and simple ET_gageR (Model A and E) atmometer for daily evaporation measures were compared to grass-based and alfalfa-based Penman-Monteith and STEB estimate of reference evaporation. Two different evaporation surface covers used with the device allowed for the comparison to be made. Measurements using the canvas 30 ET-gage cover for grass reference evaporation were compared to grass based Penman-Monteith and STEB reference evaporation estimates. Correlation between the canvas 30 measures and Penman-Monteith estimates were good compared to the STEB estimate. The ET-gage canvas 54 measures were in a good agreement with alfalfa based Penman-Monteith reference evaporation estimate. There was, however, a slight time lag in ET-gage evaporation with ET-gage evaporation continuing accumulation when the reference evaporation was zero. The sensitivity of the ET-gage for microclimate variation was tested using the measurements made for two levels and three different microclimates. A shade measurement of reference evaporation was overestimated. The response of the ET-gage to one and two meter microclimate measures was similar to the short grass measurement. Furthermore, the ET-gage surface evaporation estimate using the STEB method showed equal response to the ET-gage surface for the microclimate measure and explained the possible cause of the lag of the ET-gage response. Accurate microclimate measurements is a requirement for the performance of the PenmanMonteith approach for the estimation of reference evaporation. The investment cost required for an AWS set up is high. Alternative options for gathering information of the microc1imate measurements required for calculating reference evaporation were assessed in terms of cost saving, accuracy and other advantages. A weather station system using a Hobo H8 logger (internal relative humidity and air temperature sensor and two external channels, one which was used for solar irradiance measurements) was found to be a cost-effective method for calculating the necessary microclimatic information for calculating reference evaporation. With this system reference evaporation was estimated with reasonable accuracy, at 16 % of the cost of normal AWS system. The use of an Event Hobo logger and an ET-gage was found to provide a reasonable estimate of reference evaporation. The use of the reduced set evaporation weather station was found to be unreasonable in terms of cost and accuracy. Air temperature and relative humidity were measured from different design of radiation shields and Stevenson screens. The use of home-made seven-plate plastic radiation shields provided a similar shield to radiation and ventilation compared to manufactured shields. At a low solar angle when wind speed was very low, all the radiation shields including the small Stevenson screens showed a higher air temperature difference relative to the standard Stevenson screen. The highest average difference of air temperature measurement was measured within the small Stevenson screen and metal-radiation shield. The home-made plastic radiation shield showed similar averages of air temperature and water vapour pressure difference compared to the six- and twelve-plate Gill radiation shields. The home-made metal radiation shield showed relatively higher deviation from the mean being cold at night time and hot during the day. More research is needed to explore the efficiency of the ET-gage evaporation from variety of microclimates to establish the cause of the overestimate under shade, to develop better relation of clear day net long wave irradiance and air temperature and the use of a wind speed sensor with Hobo H8 weather station system.