Masters Degrees (Electrical Engineering)
Permanent URI for this collectionhttps://hdl.handle.net/10413/6856
Browse
Browsing Masters Degrees (Electrical Engineering) by Author "Boje, Edward Sidney."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Application of quantitative feedback theory to robust power system stabiliser design.(2003) Chetty, Paramasivan.; Boje, Edward Sidney.This thesis aims to verify the use of quantitative feedback theory (QFT) as a viable tool for designing power system stabilisers (PSS) for a single machine infinite bus system. The result of the QFT design is verified by simulation of the linear and nonlinear models representing the power system, and also by experimental procedures carried out in a laboratory. QFT falls into the classical control category, and is a frequency domain design method. It is an alternative to other design methods such as root locus and Hoo . The QFT design procedure can be extended to a multimachine system and QFT designs of MIMO systems has gained impetus. From theory, through simulation, and to the final laboratory testing on a single machine, infinite bus system, it will be shown that the application of QFT to robust PSS design does indeed work. QFT is a design method that allows the designer to choose a set of realistic operating points and to produce a design that include those points. Other methods allow the designer to produce a design for single operating point, and one has no idea how the design performs at the other operating points.Item Modelling, simulation and robust control of a Benson boiler during hot startup.(2005) Mukosa, Dunn.; Boje, Edward Sidney.Large boilers have typically been designed for continuous operation from 60-100% load. With restructuring of electrical supply and in some cases because of local fuel supply constraints, some of these boilers are run for only two shifts per day and this entails warm start ups. A reasonable objective is to bring the plant online as quickly as possible within the equipments constraint and without risk of tripping major plant equipment such as feed pumps and circulation pumps. The project required the development of a model accurate enough to represent the boiler thermal dynamics. The thesis compares the simulated model results with the measured results from a Benson boiler from Majuba power station. The developed model is then used to investigate gain scheduled and robust control approaches to the design of the control system for collector vessel level and evaporator flow rate. Once the control problems are clearly understood, an investigation into fast start up is undertaken. The subject of the start up of Benson boilers has limited open literature. This is because flexibility in plant operation has only recently become an important issues with electricity utilities. The limited research in the field of robust control of start up of Benson boiler has made the extensive work done by both Eitelberg and Boje [2001,2002,2004] state of the art. Most of the research done in this thesis follows from the work done by Eitelberg and Boje.Item Robust power system stabilizer design.(2002) Moodley, Devandren.; Boje, Edward Sidney.This thesis investigates the design of damping controllers to alleviate the problem of low frequency electro-mechanical oscillations in power systems. The operating point and network parameters of power systems are continually changing, resulting in changes in system dynamics. The conventional controller design methodology has therefore come under increasing scrutiny for its lack of considerations for robustness. The thesis first outlines the conventional design of a power system stabilizer (PSS) and then applies two robust techniques (Hoo and Quantitative Feedback Theory, QFT) to the design problem. The single machine infinite bus (SMIB) model is used to illustrate the procedure for all three design techniques. The final design is undertaken to illustrate the more important problem of robust multi-machine PSS design using QFT. The design requires linearised models of the multi-machine system. A brief discussion is given on how these can be obtained. An introduction to decentralized control design in QFT is included to support the multi-machine design. Chapter three proceeds through the design steps required to generate a conventional PSS. The technique is shown to be simple for a given set of operating conditions. The controller is shown to be adequately robust over the given set of operating conditions albeit not by design. Chapter four introduces a design technique that directly addresses robustness issues during the controller design. For a restricted range of operating conditions the designed controller demonstrates the desired robustness and performance characteristics. The inherent difficulties with Hoo in PSS design become more apparent as the operating range is extended. Chapter five introduces the second robust controller design technique. QFT is shown to be more adept at dealing with increased operating ranges and changing specifications in the single-machine infinite-bus case. The controller is easy to generate and performs well over the entire range of operating conditions. QFT is also applied to the controller design for a four-machine study system. The design is a marginally more complex than in the single machine case but is still easily accomplished. This thesis confirms previous attempts at solving the design problem using the methods outlined above. The performance of all controllers is assessed for small and large disturbances using non-linear time domain simulations with models developed using PSCAD/EMTDC and MATLAB.