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General Abstract

Introduction: Sub-Saharan Africa has the highest incidence of HIV/AIDS and AIDS-related
deaths in the world. Although there is currently no cure for the disease, significant progress
has been made in developing antiretroviral drugs (ARVs) that can inhibit disease progression.
However, despite the availability of these ARV's, HIV-positive patients use traditional herbal
medicines (THMs) either alone or simultaneously with conventional ARVs. This
simultaneous usage may cause serious adverse effects due to herb-drug interactions, although
there are also possible positive effects such as the enhanced bioavailability of the ARVs or

possible antiviral activity.

Aim: These potential interactions prompted this study which examined the pharmacokinetic
properties and influences of selected phytochemical compounds (PCs) commonly found in
THMs on drug-metabolising proteins involved in the metabolism of protease inhibitor drugs

(PIs) as well as their potential as inhibitors of HIV-1 protease.

Method: The potential inhibitory activities of fifteen PCs (Epigallocatechin gallate (EGCG),
Fisetin (FST), Ellagic acid (EGA), Cholesta-4,6-dien-3-ol (CHD), Lanosteol (LNT), Benzyl
Isothiocyanate (BIT), Gallic acid, (GA), Isosteviol (IST), Stigmasterol (STG), Phthalic acid
(PTA), Naringenin (NGN), Kaempferol-7-glucoside (K7G), Luteolin (LUT), Geranin (GER),
Apigenin (APG)) against the South African sub-type C HIV-1 protease enzyme and PIs’
drug-metabolizing proteins were investigated, using molecular dynamic (in-silico)
techniques. Furthermore, an in vitro evaluation of the cytotoxicity assays, cell viability
profiles and modulatory influences of the most promising antiviral PCs on the mRNA and
protein expressions of the drug-metabolising proteins in two human cell lines (liver (HepG2)

and kidney (HEK293)) was carried out.

Result: Four of the fifteen PCs (EGCG, K7G, LUT and EGA) were predicted to be potential
inhibitors of HIV-1 protease, as well as inhibitors of cytochrome P450 3A4 (CYP3A4) and P-
glycoprotein P-gp/ABCBI1. Results from the in vitro study showed that these four PCs were
not toxic to HepG2 cells at their ICso (50% cell viability) and 1Czo (80% cell viability). ATP
(adenosine triphosphate) levels increased at ICyo, with no significant change at ICso. In
addition, no significant change in LDH (lactate dehydrogenase) was seen (with the exception
of LUT).In the HepG2 cells, ABCBI1 protein expression (western blot) decreased overall.
While all PCs decreased CYP3A4 protein expression at ICz, (with the exception of LUT)

XX1v



protein expression increased at ICso. mRNA levels were decreased for EGCG and K7G at
I1C2. INHEK293 cells, all PCs were non-toxic. ATP concentrations were similar to the control
except for EGCG which decreased at IC, and K7G which increased at ICso. LDH
concentration decreased when exposed to the PCs at IC»o, but a significant (p < 0.05) increase
was recorded in LUT ICso. ABCBI1 protein expression increased at both ICz and ICso
concentrations, although LUT and EGA mRNA expression decreased at ICso. The decreased
protein activities of CYP3A4 in K7G ICso and LUT ICyo correlates with increased
intracellular ATP.

Conclusion: The study therefore suggests that EGCG, K7G, LUT and EGA could decrease
the biotransformation of drugs, and eventually increase drug plasma concentrations in the
systemic circulation. These natural compounds that can serve as inhibitors of drug-
metabolizing proteins and the HIV-1 protease enzymecould be useful in the treatment of
HIV-1.

Keywords: Pharmacokinetic, HIV-1 protease inhibitor, Drug-metabolising proteins,

Molecular simulations.
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/ CHAPTER ONE \
Chapter one of this thesis gives a brief introduction and the rationale behind the overall thesis,
defining research questions, the aim and objectives of the study and a summary of the

methodology.
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1.0 INTRODUCTION

1.1 Background and context of the study

Acquired Immune Deficiency Syndrome (AIDS) is caused by Human Immunodeficiency Virus
(HIV) [1]. At the end of 2018, approximately 38 million people were reported to be HIV-positive
globally [2]. Sub-Saharan Africa is the most severely affected region in the world, and accounts
for over 68% (25.8 million) of infections, and likewise the region with the highest number of
AIDS-related deaths [2]. Among the 25.8 million, 20.6 million are living in East and Southern
Africa [2]. Currently, there is no cure for HIV/AIDS; however the use of conventional
antiretroviral drugs (ARVs) can significantly repress viral replication, with 23 million people
currently accessing antiretroviral therapy (ART) worldwide [3]. Unfortunately, the emergence of
resistant strains of the virus and complications caused by drug toxicity may compromise the
effectiveness of these regimens. Despite the significant progress and advances made in the
treatment of HIV infections with orthodox medicine, HIV positive patients all around the world
still practice the concurrent use of prescribed ARVs and many traditional herbal medicines

(THMs) [4].

The use of THMs is gaining more acceptance and recognition in the treatment of numerous
diseases like HIV in several countries [5]. The World Health Organization (WHO) reported that
about 80% of African and Asian populations depend on THMs for treatment of various diseases
[6]. In South Africa, there are over 200,000 THMs countrywide [7-10]. This increased usage has
prompted the South African Department of Health to involve THMs in the fight against
HIV/AIDS and other related diseases. THMs are used to treat the side effects of ARVs as well as

fungal infections, stomach upsets, pain and dizziness. Other reasons for the use of THMs by



patients are to complement dietary intake, improve energy levels, boost the immune response

and the belief that these THMs could cure HIV/AIDS [11].

The significant increase in the usage of THMs in both developing and developed has caused
considerable public health concern among scientists and physicians who are sometimes not sure
about the safety of these herbal preparations especially when used concurrently with regular
orthodox medications such as ARVs [12] because of herbal-medicine: drug interactions that
could lead to severe toxicities and adverse reactions. Aside from the interaction between ARVs
and THMs, toxicities arising from the usage of THMs can be erroneously attributed to ARVs

complicating the clinical management of the patients.

1.2 Problem Statement or Justification for the study

In their health-seeking behavior, HIV positive patients either use THMs alone or in combination
with ARVs. This habit is significantly gaining more popularity all around the world among
people living with HIV [7, 10]. However, there are very few studies on the use of THMs and its
impact on the efficacy of ARVs. The few available studies did not investigate the direct impact
of the bioactive phytochemical compounds (PCs) of these THMs on the pharmacokinetic
properties of ARVs or drug-metabolizing proteins of these ARVs. This dissertation therefore
examined and described the pharmacokinetic influence(s) of some bioactive PCs present in
THMs used by HIV-positive patients (in South Africa) on the drug-metabolizing proteins
involved in the metabolism of commonly prescribed protease inhibitor drugs (PIs), as well as

their potential as inhibitors of HIV-1 protease.



1.3 Research Questions, Aim and Objectives

1.3.1 General Research question

The general research question of this study is: “What are the pharmacokinetic influences of
selected phytochemical compounds from herbal medicines used by HIV-positive patients on
drug-metabolising proteins of HIV-1 protease inhibitor drugs?” To answer this general research

question, specific research questions have been developed below.

1.3.2 Specific Research Questions

1.3.2.1 What are the pharmacokinetic properties and antiviral potentials of selected

bioactive PCs against the South African subtype C HIV-1 protease enzyme (PR)?

1.3.2.2 What are the pharmacokinetic influence and structural mechanisms of
inhibition/induction of the selected bioactive PCs on the drug-metabolizing proteins

involved in the metabolism of the PIs?

1.3.2.3 What are the cytotoxicity, cell viability profiles, and modulatory influences of the
selected PCs on mRNA and protein expressions of drug-metabolizing proteins involved

in the metabolism of HIV-1 PIs?

1.3.3 Aim

To determine the pharmacokinetic influence(s) of bioactive PCs present in THMs used by HIV-
positive patients on drug-metabolizing proteins involved in the metabolism of commonly

prescribed Pls and to investigate their potential as HIV-1 protease inhibitors.



1.3.4 Specific Objectives

1.4

1.3.4.1 To determine the pharmacokinetic properties of selected bioactive PCs and their

antiviral potentials against the South African subtype C HIV-1 protease enzyme (PR).

1.3.4.2 To determine the pharmacokinetic influence and structural mechanisms of
inhibition/induction of the selected bioactive PCs on the drug-metabolizing proteins

involved in the metabolism of the Pls using in-silico tools,

1.3.4.3 To evaluate the cytotoxicity, cell viability profiles, and modulatory influences of
the selected PCs on mRNA and protein expressions of drug-metabolizing proteins

involved in the metabolism of HIV-1 PlIs.

GENERAL METHODOLOGY

1.4.1 Study Design

This study was carried out in two phases; the first phase was a virtual experimental study using

in silico techniques, while phase two involves in vitro validatory experimentation using cell line

models (liver, HepG2 and kidney, HEK293).

1.4.2 Materials

1.4.2.1 Phase 1: The materials used for the first phase of the study include, a laptop
computer, SWISSPREDICT Software to identify specific enzymatic targets of the PCs,
SWISSADME Software, to determine the pharmacokinetics properties of the PCs, and
Chimera software for molecular docking to establish a molecular complex between the

drug-metabolising proteins, South African sub-type C HIV protease and the PCs.



1.4.3

1.4.2.2 Phase 2: The materials used for this phase of the study are two specific cell line
models for in vitro experiment. Other materials include, culture growth medium for cells,
QuantiTect SYBR Green PCR kit (Qiagen) and primers for quantitative polymerase chain

reaction (qQPCR) for gene expression experiment and antibodies for western blotting.

Data Collection and Tools

1.4.3.1 Phase 1 (Computational Analysis): Computational analysis was carried out on
the selected PCs; the first procedure was to identify specific enzymatic targets of the
phytochemicals. Following this prediction, the pharmacokinetic properties of the PCs
were determined. Once the protein(s) have been identified, molecular docking using the
Chimera software was carried out to establish a molecular complex between the specific
drug-metabolising proteins, South African sub-type C HIV protease and the PCs.
Molecular dynamic stimulations, using the centre for high performance computing
(CHPC), then established the conformational modifications of the proteins upon binding
of the PC. As computational studies are strictly predictive, in vitro analysis will be

required (toxicity test and gene expression analysis).

1.4.3.2 Phase Two (Cytotoxicity study, Protein and mRNA Expression analysis).

The in vitro analysis was conducted using two cell line models (liver, HepG2 and kidney,
HEK293) cell lines. The four best compounds with better inhibitory activities were
selected for this phase. All tests were conducted in triplicate to ensure unbiased results.
Toxicity analysis using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide) assay at an acute (24 hours) period was assessed. Base on this assay, the PCs
ICs0 (50% cell viability) and 1Czo (80% cell viability) were calculated. The cells were
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treated with both ICy and ICso concentrations of the PCs. Both mRNA and protein
expression for the drug-metabolising proteins were analysed using optimized real time

polymerase chain reaction (RT-PCR) and western blotting, respectively.

1.4.4 Ethical considerations

This study proposal was submitted to the Biomedical Research Ethic Committee (BREC) of the
University of KwaZulu-Natal for ethical approval before the commencement of the study, and

was fully approved by BREC (Ref No: BE566/18).

1.4.5 Dissemination plan

The findings of this study are presented in publishable manuscripts. Chapter 3 consists of a peer-
reviewed published article in an Elsevier Journal (Heliyon, 5; 02565, Appendix E) and chapter
4 consists of a peer-reviewed published article in Journal of Biomolecular Structure and

Dynamics (DOI: 10.1080/07391102.2020.1821780).

1.4.6 Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 5.00 software package
(GraphPad PRISM®) and Microsoft excel 2010. Data are expressed as mean + standard error of
the mean (SEM). Dose-response-Inhibition (Log(inhibitor) vs. normalized response) was used
for the MTT assay. Comparisons were made using the unpaired Student z-tests using Welch
correction. Statistical significance was set at 0.05. All computational raw data plots were

generated using the Origin data analysis software.



1.5 Layout of the dissertation/structure of the dissertation

Chapter One: Chapter one of this thesis, gives a brief introduction and the rationale behind the
overall thesis, defining the research questions, aim and objectives. The layout of the thesis is
described, and a summary of the methodology. However, each data chapter of the thesis has full

description of its methodology.

Chapter Two: This chapter contains a general literature review that informs the background to

the approach of this thesis.

Chapter Three: This chapter presents the published manuscript in Heliyon, 5; e02565
(Appendix E) that described the pharmacokinetic properties of the selected bioactive PCs and

their antiviral potential activity against South African sub-type C HIV-1 PR.

Chapter Four: This chapter examines the inhibitory activities and molecular dynamic
mechanisms of inhibition of the bioactive PCs targeting CYP3A4 and P-gp. (Manuscript
published in the Journal of Biomolecular Structure &  Dynamics (DOI:

10.1080/07391102.2020.1821780, Appendix F).

Chapter Five: This chapter describes the cytotoxicity, cell viability profile and modulatory
influence(s) of the selected antiviral bioactive PCs on CYP3A4 and P-gp mRNA and protein
expressions in two human cell lines (liver (HEPG2) and kidney (HEK293)). (Manuscript

submitted to Journal Bioorganic Chemistry under manuscript number BIOORG-D-20-00966).

Chapter Six: This is a synthesis chapter, where we piece together and highlight the different
findings from the study and place the study in the broader context. And the summary of the

research questions and the main findings presented.



Chapter Seven: This is the concluding chapter of the thesis, where the study conclusion and

recommendations for further research are presented.
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this thesis.

- J

12



2.0 LITERATURE REVIEW

2.1 HIV

2.1.1 The Epidemiology and Prevalence of HIV in Africa

At the end of 2018, the United Nations program on HIV/AIDS reported that approximately 38
million people were living with HIV worldwide [1]. The endemic of HIV differs from one
country or region to another, according to a UNAIDS special report, Sub-Saharan Africa being
the most affected region, accounts for approximately 26 million people living with HIV [1].
Studies have attributed the high spread of HIV/AIDS across sub-Saharan Africa to many
significant factors such as; numerous sex partners, late or few usage of condom, low occurrence
of circumcision, sex work, early exposure to sexual life, poverty, strong cultural beliefs in
witchcraft, economic uncertainty in some countries, and colonialism practices (such as hard
labour, harsh condition, and unsafe injection and vaccination practices), long latency period of
the virus, lack of immediate symptomatology, denial of the existence of HIV/AIDS by
governments and infected individuals, late or lack of preventive efforts, poverty and economic

hardship, war or political instability and lack of education [2, 3].

From retrospective studies, it was determined that the first case of HIV in Africa occurred in
Kinshasa, Democratic Republic of Congo in 1970 [4]. The disease rapidly spread to West and
East Africa in the 1980s [5-7]. The spread was influenced by the booming commercial sex
industry between industry services truckers, merchants, and migrant workers along the highway
between Tanzania and Zambia. As a result, the second highest occurrence rate of HIV in the
continent was found in Tanzam, a highway and railway station between Tanzania and Zambia in
1988 (www.avert.org/history-aids-africa.htm).
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In Sub-Saharan Africa, South Africa has the highest number of HIV-1 infected people (estimate
of 7.7 million by the end of 2018 [8], with approximately 240,000 new case of HIV infections
reported at the end of 2018. In 2018, the number of HIV/AIDS-related death was 71,000 [8].
The first case of HIV in the country was reported in a homosexual air steward from the USA,
who died of pneumonia in 1982 [9]. In South Africa, HIV-1 prevalence varies significantly by
province [10]. For example, KwaZulu—Natal with a prevalence of almost 12.2% has the highest
number of people living with HIV [11]. Moreover, Northern Cape and Western Cape have the

least prevalence of 6.8% and 5.6% respectively [12, 13].

2.1.2 The Classification and geographical distribution of HIV

HIV is subdivided into two types, namely, HIV-1 and HIV-2 [14]. HIV-1 is spread across the
world, while HIV-2 is primarily restricted to West Africa [15], but has been reported in other
countries with connections to West Africa countries. Of these two types of HIV, HIV-1 is
accountable for approximately 95% of all infections in the world [16]. HIV-2 accounts for fewer
deaths than HIV-1, due to its less infectious nature than HIV-1 [17]. The two types were reported
to have different origins, HIV-1 was assumed to have its origin from three cross-species
transmissions of the simian immunodeficiency virus (SIV) that infected chimpanzees, and HIV-2
is assumed to have originated from sooty mangabey monkeys [18]. Four classifications of
genetic diversity were reported for HIV-1, namely: Major (M), Outlier (O), N (non-M/N) and
Putative (P) [19, 20]. The group M is responsible for more than 90% of HIV-1 infections and is
split into nine genetic subtypes (A, B, C, D, F, E, H, J, and K), six subtypes (A1-A4, and F1-F2)
and a range of circulating recombinant forms (CRFs) [20, 21]. Subtype C is found mostly in
Southern and Eastern Africa, while Subtype A is found mostly in East Africa [18]. Subtype D is

predominant in East Africa, and B in Northern Africa and Western world [22]. Subtype F is
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subdivided into F1 and F2, and has been reported in South America, Africa and Eastern Europe
[23, 24]. Subtype G and A/G recombinants also occur in Eastern Africa and in Central Europe,

while H and K only occur in Central Europe. Subtype J has been found in Central America [23].

The Geological distribution of the HIV-1 subtypes is illustrated in figure 1.1 below.
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Figure 1.1:  Distribution of HIV-1 subtypes across different geographical locations (Adopted

from Michael, 2011 [25]).



2.1.3 The Structure of HIV-1

HIV-1 virions have a spherical shape and consist of two essential components: the core genetic
component and the protein component called the capsid, which surrounds the genetic component
[26]. The genetic information of the virus is housed in the genome, while the capsid protects the
virus and gives it shape. The lipid bilayer membrane of the virus surrounds the viral Env

glycoprotein and a number of cellular proteins [26].
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Figure 1.2: The structure of HIV virion particle. Source: www.HIVbook.com/2011/10/28/3-
pathogenesis-of-hiv-1-infection/.

Matrix (MA), p6, capsid (p24) and nucleocapsid (NC/p7) form the structural proteins [27]. The
Matrix (MA) forms a shell that connects to inner side of the membrane. The capsid has the N-
terminal domains that are arranged in a hexameric ring to form a capsid. The NC is involved in
the formation of the genomic RNA dimers as well as the stabilization of the NC assembly. The

p6 is essential for the last stage of viral assembly and the release of the vpr protein. Both the
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CD4-receptor binding domain and co-receptor binding site were enclosed by gp120 [26]. The
virus genome is made up of two single stranded RNA molecules, with four main regions: the
LTR, gag-pol gene, env gene and the accessory genes (Figure 1.2) [26].
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Figure 1.3: The structure illustrating the RNA genome of HIV-1. Source:
HIVbook.com/2011/10/28/3-pathogenesis-of-hiv-1-infection/.

2.1.4 HIV-1 Life Cycle

Viral attachment to the host is the first step in HIV-1 life cycle. The virus must bind to the CD4
cell; the gp41 and gp120 proteins on the surface of HIV-1 attach with receptors on the surface of
the CD4 cell [28] followed by the binding of CC chemokine receptor 5 (CCCRS). The binding of
the receptor leads to a conformational change on the gpl120 and eventually exposes the
hydrophobic domain on the gp41 that enables the fusion of the virus with the host cell membrane
thus, permitting the entry of the viral core into the cytoplasm of the host cell [28]. The reverse
transcriptase enzyme (RT) is the first enzyme to act in the virus life cycle. It is important in the
conversion of the virus’ single-stranded RNA into double-stranded viral DNA [29] which is then

incorporated into the host cell DNA [30].

Once the integration of the viral DNA is successful, it is then transcribed into mRNAs by the

host cell’s RNA Polymerase II enzyme [26]. The mRNAs are translated to form the essential
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structural components, enzymes and genomic. Infected cells will then begin to produce immature
virions [26]. These newly formed viruses leave the cell by budding. The HIV-1 protease enzyme
then cleaves to the Gag and Gag pol polyprotein to produce mature viruses [26]. Many more
CD#4 cells are then infected by the newly produced and released viruses (virions) to repeat the

whole process. The life cycle of HIV-1 is summarized in figure 1.4 below:
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Figure 1.4: The viral life cycle of HIV. Source: www.aidsinfonet.org.
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2.1.5 Inhibitory steps of HIV-1 life cycle and Antiretroviral Drugs

The Food and Drug Administration (FDA) has approved not less than twenty drugs for anti-HIV-
1 therapy [31]. ARV therapy is the use of anti-HIV drugs (ARVs) to treat HIV infections to
repress the replication of the HIV by disturbing or inhibiting the vital steps of HIV life circle
[32] and, have been reported to be the most efficient and successful therapy to achieve a durable
viral load suppression and restoring the immune system [33]. The key objectives of ART is to
deliver the highest and long-lasting suppression of viral load (VL), reinstate the immune
function, decrease HIV/AIDS-related death, improve life expectancy and quality of life, prevent
the transmission of the virus, and reduce adverse side effects of the treatment [34]. There are five
classes of HIV-1 inhibitor drugs available; Protease Inhibitors (PIs), Nucleoside, Nucleotide and
Non-nucleoside reverse transcriptase inhibitors (NRTIs, NtRTIs, NNRTIs), Integrase inhibitors
(InSTIs), and Entry inhibitors (CCCRS) [34-36]. Stavudine, lamivudine, emtricitabine, abacavir,
zidovudine and tenofovir are commercially available NRTIs. While, darunavir, atazanavir and
lopinavir/ritonavir are known HIV-1 protease inhibitor drugs. NNRTI drugs include efavirenz,

delavirdine, etravirine, and nevirapine [35, 36].

ART is usually a combination of two NTRIs and one PI or NNTRI [34, 37]. Studies revealed that
ART has significantly increased both the emotional and physical quality of life for people living

with HIV/AIDS and subsequently reduced HIV/AIDS-related deaths [38].
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Table 1.1: Classes of antiretroviral agents and the inhibitory step of HIV-1 life Cycle [34].

Class Mechanism of inhibiting Specific action
HIV-1 life cycle

NRTIs, Inhibit reverse transcriptase ~ Mimic the structure of DNA, thereby stopping

NtRTIs transcription HIV-1 RNA to DNA

NNRTIs Inhibit reverse transcriptase ~ Modify the catalytic site (conformational
change) and inhibits activity of reverse
transcriptase

Pls Inhibit protease Inhibition of the final developmental stages of
the virus replication, subsequently leading to
the formation of immature virion

InSTIs Inhibit viral integration Inhibit the transmission of pro-viral DNA
strands into the chromosomal DNA of the host

Entry Inhibit viral entry Bind to HIV-1 gp4l/gp120 or host cell

Inhibitors CD4+/chemokine receptors

2.2 HIV-1 Protease Enzyme (PR)

As seen in figure 1.4, several enzymes are important for successful replication of HIV-1. The

HIV-1 PR is crucial enzyme that catalyzes the production of matured, viable and infectious

virions [39]. HIV-1 PR is a C2-symmetric active homodimer (two monomers of 99 amino acids

each) and is from the family of aspartic proteases [32, 40]. The two monomeric chains assemble

to form an enclosed tunnel covered by two flaps that characteristically "open and close" upon

substrate binding [40]. The active site (amino acid position 25-27), the dimerization (amino acid

position 94-95) and the flap domains (amino acid position 46—56) are the three crucial domains

of the HIV-1 protease enzyme (Figure 1.5). The active site confers the hydrophilic activity of the

enzyme while the flap domain allows the entry of the large gag polyproteins. The dimerization
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domain is responsible for dimer formation as well as stabilization of an active protease [32]. This
is an auto-processing mechanism that is categorized into two intramolecular and successive
steps. The first step is the cleaving of the N-terminus at the P6pol-protease site and the cleaving

of the C-terminus at the PR-RT cleavage site is the second step [41, 42].

Dimerization domain

Figure 1.5: Crystal structure of homodimer of HIV-1 Subtype C Protease enzyme with the three
domains labelled. The flexible structures (flap) open and close to allow the entry of the large-gag
poly proteins and the aspartates (ASP 25) allow hydrolytic activity of PR (Adopted from Brik
and Wong, 2003) [39].
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Figure 1.6: The protease region is being flanked at the N-terminus by the P*°'-protease site and

the C-terminus by the reverse transcriptase [41, 42].

2.3 HIV-1 Protease Inhibitors

With the significant role of PR in the life cycle of HIV-1, PR is a key target of drug therapy

against HIV. Protease inhibitor drugs (PIs) are structurally similar to the natural substrate of

HIV-1 PR, thereby competing with PR natural substrates for, binding to the active site.

Therefore, inhibited PR cannot cleave the Gag and Gag pol polyprotein to produce mature,

infectious virions [37, 42, 43].
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Protease Inhibitor blocks the
cleavage of precursor protein
(gag/pol polyproteins) into
active protein that are necessary
for new mature HIV virus.

Protease
Inhibitor ‘

Figure 1.7: Mechanism of action of PIs. The HIV PR is the target of Pls; they prevent the

cleavage of the polypeptide and maturation of the virion. (Adopted from Bhargava et al., 2017)
[44].

2.4  Antiretroviral therapy in South Africa

According to 2019 ART clinical guidelines for South African, all HIV-positive individuals are
eligible to begin ART. The guidelines further stated that ART should be initiated for every
patient without contra-indications within 7 days, or if possible, on the same day of diagnosis.
More importance and urgency are given to children (less than five years old) and patients with
advanced HIV disease and pregnant women. Pregnant women without any clinical complication
are to begin ART on the same day as their HIV  diagnosis
(https://sahivsoc.org/Files/2019%20Abridged%20ART%20Guidelines%2010%200ctober%2020
19.pdf). Table 1.2 below showed the ARVs currently available in Southern Africa and their

recommended dosage.
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Table 1.2: ARVs available in Southern Africa and their Dosages [34].

Generic name

Tenofovir
Lamivudine
Emtricitabine
Abacavir
Zidovudine
Stavudine
Didanosine
Efavirenz

Nevirapine

Rilpivirine
Etravirine
Atazanavir
Lopinavir/RTV
Darunavir
Raltegravir
Dolutegravir

Maraviroc

Drug Class
NtRTI
NRTI
NRTI
NRTI
NRTI
NRTI
NRTI

NNRTI

NNRTI

NNRTI
NNRTI
PI
Boosted PI
PI
InSTI
InSTI

CCCRS5 blocker

Recommended dosage
300 mg per day
300 mg per day
200 mg per day
300 mg half a day (Twice daily)
300 mg half a day (Twice daily)
30 mg half a day (Twice daily)
400 mg per day taken on an empty stomach
600 mg at night

200 mg per day for 2 weeks, follow by 200 mg half a
day (Twice daily)

25 mg per day with food

200 mg half a day (Twice daily)

400 mg per day or 300 mg with RTV 100 mg per day
400/100 mg half a day (Twice daily)

600 mg half a day with 100 mg RTV half a day

400 mg half a day (Twice daily)

50 mg per day

150 mg, 300 mg or 600 mg half a day (Twice daily)
(doses depend on concomitant medication and

interactions
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2.5 Metabolising Enzymes/Transporters and Protease Inhibitors drugs

The absorption and distribution of PIs determine their pharmacological and toxicological effects,
and enzyme/transporter-mediated processes influence them. Figure 1.8 shows the localization of
membrane transport proteins and intracellular enzymes in a normal cell. Solute carrier (SLC) and
ATP-binding cassette (ABC) are membrane transporters involved in the uptake and pumping out

of PIs, while the cytochrome P450 system biotransforms PIs in human liver microsomes [45].
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Figure 1.8: Illustration of the localization of transport proteins in translocation of Pls. (Adopted
from Griffin et al., 2010) [46].
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PIs inhibit other transport proteins such as Sodium-taurocholate co-transporting polypeptide, bile
salt export pump (BSEP) and Organic anion-transporting polypeptides (OATP1B1). PIs can also
bind to pregnane X receptor (PXR) and subsequently mediates the induction of cytochrome P450

3A4 (CYP3A4) [46].

2.5.1 Solute Carrier and ATP-Binding Cassette

Transporter-mediated influx is governed by the SLC superfamily, and is the rate-limiting step in
the bioavailability of drugs and hepatobiliary clearance [46]. Organic anion-transporting
polypeptides (OATPs) and organic cation transporters (OCTs) are the most important of this
superfamily and are the transporters involved in interacting with drugs, as shown in figure 1.8.
OATPs facilitate the bidirectional transportation of various compounds/drugs including Bile acid

(BA), and other xenobiotics [47].

The ABC transporters are the most abundant protein families, present in all living organisms.
Their role and structure are fairly well preserved across organism’s species. The transport
proteins mediate the transmembrane movement of biomolecules by making use of the energy
created by hydrolysis of ATP [48]. Findings suggest that these transport proteins are highly
involved in the metabolism of PIs and alter PIs pharmacokinetics by reducing bioavailability,
thereby reducing concentrations in organs and tissues. The inadequate plasma concentration of

the PIs has been associated with the development of drug resistance [49].

2.5.1.1 P-glycoproteins (P-gp)

P-glycoproteins are the most studied members of the ABC superfamily. They are the most

significant drug transporter in the central nervous system and other tissues. They are referred to
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as multidrug resistance proteins 1(MDR1) because studies have shown that they are the cause of
drug resistance to cancer drugs and major cause of treatment failures [49]. They are essential
proteins present in the cell membrane, encoded in humans by the ABCB1 gene (van Waterschoot
et al., 2010) [50]. Their primary role is to pump many potentially toxic substances out of the
cells. Other functions include controlling the transportation and bioavailability of drugs. P-gps
have wide substrate specificity, and they are an ATP-dependent efflux pump, consisting of 1242
amino acids. All known PIs are reported to be substrates of P-gp [50] and over-expression of P-

gp genes was reported to reduce the plasma concentration of Pls [49, 51].

The comparison of the results from amino acid sequences from cloned complementary DNAs
(cDNAs) with another member of the ABC family suggests that human P-gp has two
symmetrical halves (two homologous segments). Each of these halves has six transmembrane
(TM) domains that interrelated to one another via an intracellular and flexible polypeptide loop
(Figure 1.9). In the cytoplasm, two ATP-binding domains, identified as nucleotide-binding
domains (NBDs) comprise the power units of P-gp. These ATP-binding domains (NBDs) with
energy transfer, transport substrates across the membrane in the cytoplasm. Similar to several
other ABC transporters, P-gp alternates between two different conformational states during the
transportation cycle. Firstly, at a conformational state (inward-facing conformation) with the
potential to bind intracellular substrates and at the second conformational state (outward-facing
conformation), the transporter is capable of transmembrane transportation of substrates. For the

transportation of substrate, two molecules of ATP bind to P-gp at the NBDs. The binding of
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Figure 1.9: The structure of drug transporting P-gp illustrating the TMD and NBD 1 and 2
(Adopted from Dewanjee, et al., 2017) [52].
ATPs to NBDs result in the dimerization of the NBDs, and eventual occlusion of the binding site
of P-gp. Hydrolysis of ATP and the resulting post-transport outward-facing conformation were

the results of dimerization [52].

2.5.1.2 Cytochrome P450 (CYP)

Cytochrome P450 (CYP450) belongs to a superfamily of closely related, and membrane bound
CYP450 enzymes containing heme as a cofactor [53] CYP450 enzymes are the major enzymes
involved in the metabolism of drugs and are responsible for almost 75% of total drug
metabolisms [54]. CYP450 deactivates drugs, either directly or by facilitated elimination from
the system, and can also bioactivate several substances to form their active compounds [45]. In

mammals, CYP450 oxidizes xenobiotics, steroids, and other metabolites. CYP450 are also
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involved in the catabolism and synthesis of hormones and play essential role in the biosynthesis

of fatty acid, hormones and defensive compounds in plants.

In humans, CYP450 are membrane-bound proteins found in the inner membrane of the
mitochondria or in the endoplasmic reticulum [55]. Cytochrome P450 enzymes metabolize
several substrates. Some metabolize a small number of substrates, for example CYP19, whereas
others metabolize numerous substrates, for example CYP3A4. CYP450 enzymes are present in

the liver, kidney and intestine where they are involved in numerous biological activities.

Eighteen mammalian cytochrome P450 families that encode for 57 genes in the human genome
have been reported [56]. The CYP450 families are CYP1, CYP2, CYP3, CYP4, CYPS, CYP7,
CYPS8, CYP11, CYP17, CYP19, CYP20, CYP21, CYP24, CYP26, CYP27, CYP39, CYP46 and
CYP51. Several drugs may inhibit or induce CYP450 3A enzymes, and it is vital to understand
their regulation and expression in the context of HIV-1 infection [57]. For instance, RTV inhibits
CYP3A4, resulting in decreased hepatic metabolism and an increase in the concentration of
drugs metabolized by the same isoenzymes [57]. This inhibitory activity of RTV is the reason
many Pls are used in combination with RTV because it inhibits CYP3A4 in order to maintain an
optimal plasma concentration of Pls. In separate studies by Fabbiani et al., 2011 and Daniel et
al., 2013 sub-therapeutic plasma drug concentrations of PIs were reported in HIV positive
patients failing therapy [58, 59], and may be attributed to either over-expression or over

induction of CYP3A4 genes and protein activities respectively.
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Water channel (aqueduct)

Figure 1.10: The cartoon representation of CYP3A4 structure with different channels, the heme
and residue 375 are characterized by spheres and coloured yellow and pink, respectively
(Adopted from Fishelovitch et al., 2010)[60].

2.5.2 CYP3A4 and P-gp Substrate Overlapping

CYP450 and P-gp form a critical and essential cascade in the metabolism and elimination of
foreign substances in the body. Interestingly, numerous studies have reported that both P-gp and
CYP3A4 have broad and overlapping substrate specificity [51, 61-63]. As several P-gp
substrates or modulators are also substrates or modulators of CYP3A4, and P-gp inhibitors were
also reported to be inhibitors of CYP3A4.For example, cyclosporin and RTV are inhibitors of P-
gp as well as CYP3A4 [51, 63-65]. The inhibition or induction of both P-gp and CYP3A4 has

been associated with several drug-drug and herbal-drug interactions [61].
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2.6 TRADITIONAL HERBAL MEDICINE AND ITS GLOBAL USAGE

World Health Organization defined THMs as any health procedures, methods, beliefs, as well as
knowledge, integrating plant-based medications, manual techniques, utilized singly or in
combination, to cure, make a diagnosis and avoid diseases or improve well-being [66]. In other
words, TMHs are plant-derived ingredients with minimum or no industrial handling used for the
treatment of infection within regional healing practices. THMs are getting substantial
consideration and attention in global health. In 2008, WHO reported that 80% of the population
of Africa and Asia depend on THMs not only for treatment and diagnosis of diseases but for
other primary healthcare purposes [67, 68]. In New Zealand, 48% of patients in a provincial
hospital reported having used THMs [69]. A similar study in Sri Lanka showed 67.4% among

the studied population of 500 cancer patients uses THMs [70].

THM products play substantial roles in the control and treatment of several diseases such as
HIV, diabetes, severe acute respiratory syndrome (SARS), hypertension and many more
diseases. For example, the use of THMs was significant in the control and treatment of SARS in
China [71]. Several countries like United States of America (USA), Nigeria, South Africa, Japan,
Germany, China, and India have committed substantial and considerable research investments in
THMs [66], believing that THMs research will play a crucial role in enhancing global health
care. Pharmaceutical Industries and scientist all around the world have also invested a substantial

amount of money looking for lead medicinal herbs and PCs [72].

2.6.1 Use of THMs in Africa and South Africa

The use of THMs in the continent of Africa has been traced back to the Stone Age and is older
than some traditional medical sciences [73], and its usage is significantly increasing [74, 75].
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THMs are used in all African societies and are universal to all cultures and traditions in Africa to
cure various diseases. The majority of Africans either use THMs alone or in combination with
other conventional medicines. Tabuti et al. 2012 reported that many people in Uganda had an
immense understanding of the use of traditional medicines and used them as first-line treatment
options before using conventional medicines [76]. In a similar study conducted in Lagos,
Nigeria, 58% of the studied population believes that THMs are safer and efficient to use.
Majority of the studied population believe that because the THMs are plant products, they do not
possess any harmful effect [77]. In another study among people living with HIV, Puoane et al.
2012 reported that between 15% to 79% of people living with HIV in Africa use traditional

medicine either alone or in combination with ARVs [78].

In South Africa, a multi-racial society with diverse approaches to treatment of illness and
diseases based on different ethnic beliefs, approximately 70% — 80% of the South African
population was reported to see traditional healers and make use of plant-derived herbal medicine
for the control and treatment of various diseases [79-80]. Among the Black South African
community, the majority use THMs rather than conventional medicines because they believe

they are cheap, culturally appropriate and more individualized than the conventional drugs [81].

Several factors such as poverty, cultural beliefs, illiteracy, limited access to medical facilities,
religious beliefs, HIV-1 infection and related illnesses, the adverse effects of ARVs, nausea and
pain [82] are believed to be responsible for the significant use of THMs over conventional
medicines. In addition, the limited number of orthodox doctors available in the medical sector
who are unable to meet the need of the large population of African people is assumed to add to
the soaring prevalence of THMs usage [83]. People with limited access to health care facilities

mainly use traditional remedies [83].
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2.6.2 Concomitant use of ART and African Traditional Medicine

Among people living with HIV, there are several reports of significant and concomitant use of
THMs with ARVs. Peltzer et al. 2008 reported that there is an increase in the use of THMs
among HIV-positive patients living in the province of KwaZulu-Natal in South Africa [79]. Ina
study from three ART facilities in the Kumasi Metropolis of Ghana, it was reported that 53.2%
of the surveyed HIV-positive population used ARVs and THMs at the same time [82]. A high
percentage of HIV-positive patients (98.2%) out of 388 patients interrogated at a Family Care
Centre (FCC) in Harare, Zimbabwe reported using THMs concomitantly with ARVs [84]. A
separate study in Uganda by Namuddu et al. 2011 reported that 33.7% of patients on ART were
using THMs [85]. Also, in Uganda in the district of Kabarole, 38% of HIV-positive individuals
were found to concomitantly use ARVs and THMs to manage HIV infections [86]. In a hospital
in Kano, North-West Nigeria, a similar study showed that 4.25% of the 430 patients studied used
ARV and THMs concurrently [87]. These and many more studies have confirmed the significant
number of HIV-positive patients that use ARVs and THMs simultaneously in Africa. However,
out of these high percentage of HIV-positive patients using ARVs and THMs concurrently, only
a very few patients notified their health care providers of their usage of THMs. This validated
Owen-Smith et al. suggestion that unambiguous dialogues between HIV-positive patients and
health care providers on how to successfully and effectively incorporate THMs into ART

treatment regimens in order to ensure the safety and health of patients living with HIV [88].

2.6.3. Herb-Drug Interactions from Concomitant Use of ARVs and THMs

The herb-drug interactions occur because several THMs alter the activities of drug-metabolizing

proteins of many conventional medicines, thereby affecting the drugs' plasma blood

33



concentrations and therapeutic effects. There are little documentation with regard to the
interaction between conventional medicines and plant-derived herbal products. Those limited
studies have shown that simultaneous use of THMs may affect or resist the therapeutic effect of
conventional drugs, thereby, exhibiting significant herb-drug interactions and causing the
manifestation of adverse drug reactions [89, 90]. Either the crude extracts of these herbal
medicines or their PCs can interact directly or indirectly to influence the pharmacokinetic and
toxicological properties of conventional drugs. These herbs could interact with drug-
metabolizing enzymes and transporters by either inhibiting or activating them, thereby altering

the drugs bioavailability and pharmacological properties.

Interactions between herbal medicine and conventional drugs can lead to serious adverse effects
[91]. For example, simultaneous use of Ginkgo (Ginkgo biloba) with Aspirin and Warfarin
causes spontaneous hyphema and intracerebral haemorrhage respectively [92, 93]. Studies also
showed that simultaneous usage of St John's wort with contraceptives such as ethinylestradiol
and desogestrel causes inter-menstrual bleeding [94]. It also causes serotonin syndrome when
used together with trazodone, sertraline or nefazodone [95, 96]. Bleeding and increased blood
pressures are the adverse effect of simultaneous use of Ginkgo with warfarin and a thiazide
diuretic, respectively [97]. Yong and Loh, 2004 reported altered pharmacokinetic properties of

paracetamol and hypoglycaemia when Galic acid was taken together with chloropropamide [90].

2.6.4 PI drugs and THMs Interactions

The therapeutic outcome of HIV PIs depends on the relationship between membrane transport
proteins and drug-metabolizing enzymes expressed in the intestine and liver. As discussed

earlier, these enzymes and transporters are capable of influencing the absorption, distribution,
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and excretion of PlIs, which in turn determined the pharmacological and toxicological effects of
PIs. Alterations in the activities of these proteins significantly affect the therapeutic effect of
HIV PIs [49, 98]. However, different herbal medicines have been reported to modify the

activities of these drug-metabolizing proteins.

An in vitro study has shown that Cat's claw (Uncariato mentosa), a therapeutic plant with
antiviral activity, inhibits CYP3A4 activity and subsequently raises the concentration of PIs such
as ATV, RTV and SQV in the plasma [98]. In another study, decreased blood concentration of
indinavir by St. John's wort (Hypericum perforatum) was reported due to induction of CYP3A4.
Hajda et al. 2010 reported that Garlic extract induced P-gp expression in the intestine and a
significant reduction of approximately 50% SQV plasma concentration was detected in 10
healthy volunteers after 21 days of administering of garlic (Garlipure, two capsules/day) [100].
Fatal adverse reactions can also occur when herbal medicine is used with PlIs. For example, a
study by Gallicano et al. 2003 reported gastrointestinal toxicity when RTV and garlic were used
concurrently [101]. Therefore, the combination of herbal medicine with PIs that are metabolized

by CYP3A4 or P-gp may lead to drug failure and serious adverse effects.
2.7  THMs USED BY HIV-1 POSITIVE PATIENTS IN SOUTH AFRICA

Table 1.3 shows some of the commonly used and commercially available THMs used by HIV
positive patients. These herbal medicines have been reported to boost the immune system,
increase CD4 cell count and decrease viral load. Medicinal use of Ingungumbane Mahlabizifo
herbal mixture was reported to improve CD4 cell count and reduce viral load [102]. In a
preliminary and yet unpublished observational study conducted on 18 participants, COA®-FS

herbal medicine was reported to significantly boost CD4 cell count and lower viral load when
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administered alone to 18 HIV-positive participants.

(http://ndabaonline.ukzn.ac.za/UkzndabaStory/Vol4-Issuel 5-

CHS/HIV%20Traditional%20Complementary%20and%20Alternative%20Medicine%20Use%20

Investigated/). S’mangaliso herbal mixture was also reported to possess anti-HIV activity [102].

These THMs consists of several African plants, for example Ngoma herbal tonic consists
of Echinacea sp., Dandelion sp., Alfalfa sp., Aloe ferox and Harpagophytum sp [103]. Table 1.3
summarised the TMs and there plant components. These are traditional African plants used in the
treatment of various diseases. Vernonia amygdalina, Azadirachta indica and Carica papaya are
being used to treat diseases in African countries such as South Africa, Uganda and Kenya [104,
105]. Likewise, Sutherlandiaf rutescens and Hypoxis hemerocallide are used for treatment of
viral diseases [86, 106]. Langlois-Klassen et al. further reported the use of Vernonia amygdalina,

Aloe barbadensis, Ocimum sp and many more plants in the treatment of HIV [86].
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CHAPTER THREE
In this chapter, the pharmacokinetic properties and inhibitory activities of selected PCs found
in THMs against South African HIV-1 Sub-type C protease enzyme (PR) were described.
Four FDA-approved protease inhibitor drugs LPV, DRV, ATV, and SQV were used as
standard. In order to achieve this, computational tools were employed to predict both the

pharmacokinetic and inhibitory properties of the PCs.

An article titled ‘The pharmacokinetic properties of HIV-1 protease inhibitors: A

computational perspective on herbal phytochemicals’ was published in an Elsevier Journal

(Heliyon, 5; 02565, Appendix E).
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The Pharmacokinetic Properties of HIV-1 Protease Inhibitors: A Computational

Perspective on Herbal Phytochemicals

Abstract

Recent studies have isolated phytochemicals from plants to repress HIV, but few studies have
focused on the effects of these phytochemicals on the activities of enzymes/transporters
involved in the metabolism of antiretroviral drugs. Centre of Awareness-Food Supplement
(COA®-FS) herbal medicine is one of the herbal medicines reported to have potential anti-
HIV features. The aim of this study was to examine the activity of selected phytochemical
compounds present in this supplement using computational tools.
SWISSTARGETPREDICTION and SWISSADME servers were used to determine the
effects of selected phytochemicals on the enzymes/transporters involved in the metabolism of
protease inhibitor drugs, (PIs) (Atazanavir, Lopinavir, Darunavir, Saquinavir). Potential
structural inhibitory activities of these phytochemicals were explored. Six phytochemicals
(Geranin, Apigenin, Fisetin, Luteolin, Phthalic acid and Gallic acid) were predicted to be
inhibitors of CYP3A4, which may slowdown elimination of PIs thereby maintaining optimal
PI concentrations. Free binding energy analysis for antiviral activities identified four
phytochemicals with favourable binding landscapes with HIV-1 protease, with
Epigallocatechin gallate and Kaempferol-7-glucoside being the best of the four.
Computational methods are useful tools for predicting the interactions of phytochemicals

found in herbal medicines with ARVs.
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Introduction

The World Health Organization (WHO) reported that approximately 72 million people had
already been infected with the Human Immunodeficiency Virus (HIV) worldwide in 2017
(WHO, 2018). Of these, sub-Saharan Africa was the most heavily affected region, accounting
for over 69% of all infected cases. The Joint United Nations (UNAIDS report) (2018) states
that although there is a steady decline in Acquired Immune Deficiency Syndrome (AIDS)
related illnesses over the past decade, the global rate of new HIV infections is not falling fast

enough to reach the 2020 targets (WHO, 2018).

In the replication cycle of HIV in human immune cells, the HIV protease enzyme is required to
produce mature and infectious HIV virions. This has allowed the enzyme to be a focus for anti-HIV
inhibitors (Scholar, 2011). The protease enzyme is a C2-symmetric active homodimer, consisting of a
non-covalently connected dimer of 99 amino acid residues each. The two monomeric chains assemble
to form an enclosed tunnel covered by two flaps that characteristically “open and close” upon
substrate binding (Levy and Caflisch, 2003). Viral replication by HIV is inhibited by protease
inhibitor drugs (PIs) by binding to the HIV proteases and subsequently obstructing the
proteolytic cleavage of the protein precursors which results in the development of immature
non-infectious viral particles (Soontornniyomkij et al., 2014; Geretti and Easterbrook, 2001).
In South Africa, there are currently four FDA-approved Pls in use: atazanavir, darunavir,
lopinavir and saquinavir, with ritonavir being used as boosters with the PIs (Carmona and

Nash, 2017).

The use of traditional herbal medicine is gaining more popularity in the treatment of diseases
such as HIV, not only in developing countries but also in developed countries, which has
caused great public health concern among scientists and physicians who are sometimes not

sure about the safety of herbal preparations especially when used concurrently with regular
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orthodox medications (WHO, 2018). In South Africa, many patients undergoing antiretroviral
therapy also consume traditional herbal medicine (Nlooto and Naidoo, 2014). One of the
most consumed herbal medicine by HIV positive patients in South Africa is COA®-FS
(Centre of Awareness) herbal medicine (Nlooto and Naidoo, 2014). Other herbal medicines
include Imbiza Herbal Tonic, Ngoma herbal tonic, Ingungumbane Mahlabizifo and many

more (Ndhlala et al. 2011).

In a previous study in our lab, one of the herbal medicines and its component plants (COA®-
FS herbal medicine) were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) to
identify the phytochemical compounds present in them (Boadu et al., 2019; Nwabuife, et al,
2019). COA®-FS herbal medicine comprised of six plants, namely; 4. indica, P. americana,
C. papaya. S. mombin, O. viride and V. amygdalina (https://www.coadrugs.org/coafs/). Over
fifty compounds were identified from the crude, methanol, hexane, dichloromethane,
ethylacetate and ethanol extracts of the different plants, fifteen of which were structurally
related and have been reported in some of the other herbal medicines or their component
plants and, also reported to possess antiviral activities against different viral infections were

chosen for this study.

While previous studies have reported on antiviral activity of herbal medicine, few studies
have looked at the effect of the chemical constituents of the herbal medicines on the enzymes
and transporters involved in the metabolism of drugs such as PI drugs, and the possibility of
serious side effects. This study examines the pharmacokinetic effect of fifteen phytochemical
compounds potentially found in some of the herbal medicine on the activities of major
enzymes and transporters involved in the metabolism of FDA-approved protease inhibitor
drugs commonly used in South Africa, and to determine if they are potential inhibitors of

HIV-1 protease using in silico pharmacodynamics and pharmacokinetic analysis.
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Figure 1 illustrates the 2-D structures of the selected fifteen phytochemical compounds, 2-D
structures of the four FDA-approved protease inhibitor drugs and the crystalline structure of
HIV protease enzyme indicating the active site amino acid residues of the enzyme. Three

letter codes were assigned for the phytochemical compounds and the four FDA-approved

drugs.
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Figure 1: 2D Structures of the fifteen selected phytochemical compounds and 2D structures of the Four FDA
approved drugs and Crystal structure of South African HIV-1 sub-type C (PDB code 3U71)
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Methods

Table 1 shows the fifteen selected phytochemical compounds investigated. Nine of the
selected phytochemical compounds (EGA, CHD, LNT, BIT, GA, IST, STG, PTA and NGN)
were present in the COA®-FS herbal medicine and the remaining 6 (six) compounds were

reported in literature to be present in the component plants of the herbal medicine.

Computational Methods

Prediction of Enzymes and Transporters Targets

SwissTargetPrediction and SwissADME servers were used for the prediction of proteins
(enzymes and transporters) involved in the metabolism of the four FDA approved drugs and
the selected phytochemical compounds from the supplement and its component plants and
their pharmacokinetic effects (Gaffer et al., 2013). The server predicts the target of small

molecules.

Measurement of Pharmacokinetics Properties and Drug Likeliness of the Phytochemical

compounds

SWISSADME server was used for the determination of the physicochemical descriptors and
defines the pharmacokinetic properties and drug-like nature of each phytochemical
compound. The “Brain Or Intestinal Estimated permeation, (BOILED-Egg)” method was

utilized as it computes the lipophilicity and polarity of small molecules (Daina et al, 2017).

HI1V-1 Enzyme and ligand Acquisition and Preparation

The X-ray crystal structures of the HIV-1 Protease enzyme (PDB codes: 3U71) was obtained

from the RSCB Protein Data Bank (Burley et al., 2018). The structures of HIV-1 protease
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was then prepared on the UCSF Chimera software package (Yang et al., 2012) where the
monomeric protein was converted to a dimeric structure. The four FDA-approved drugs
Atazanavir, Darunavir, Lopinavir, and Saquinavir, as well as the fifteen phytochemical
compounds, were accessed from PubChem (Kim et al., 2016) and the 3-D structures prepared

on the Avogadro software package (Hanwell et al., 2012).
Molecular Docking

The Molecular docking software utilized in this study was the Autodock Vina Plugin
available on Chimera (Yang et al., 2012), with default docking parameters. Prior to docking,
Gasteiger charges were added to the compounds and the non-polar hydrogen atoms were
merged to carbon atoms. The phytochemical compounds were then docked into the binding
pocket of Protease (by defining the grid box with a spacing of 1 A and size of 24 x 22 x 22
pointing in X, y and z directions). The four FDA-approved drug systems, as well as the four
best-docked phytochemical compounds systems, were then subjected to molecular dynamics

simulations.
Molecular Dynamic (MD) Simulations

The MD simulations were performed using the CPU version of the SANDER engine
provided with the AMBER package, in which the FF14SB variant of the AMBER force field

(Nair and Miners, 2014) was used to describe the protein.

ANTECHAMBER was used to generate atomic partial charges for the ligand by utilizing the
Restrained Electrostatic Potential (RESP) and the General Amber Force Field (GAFF)

procedures. The Leap module of AMBER 14 allowed for the addition of hydrogen atoms, as

well as Na* and Cl counter ions for neutralization of all systems. The amino acids were

renumbered based on the dimeric form of the enzyme, thus numbering residues 1-198.
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The eight systems were then suspended implicitly within an orthorhombic box of TIP3P

water molecules such that all atoms were within 8A of any box edge.

An initial minimization of 2000 steps were carried out with an applied restraint potential of
500 kcal/mol for both solutes, were performed for 1000 steps using the steepest descent
method followed by 1000 steps of conjugate gradients. An additional full minimization of

1000 steps was further carried out by conjugate gradient algorithm without restraint.

A gradual heating MD simulation from OK to 300K was executed for 50ps, such that the
systems maintained a fixed number of atoms and fixed volume. The solutes within the
systems were imposed with a potential harmonic restraint of 10kcal/mol and collision
frequency of 1.0ps. Following heating, an equilibration estimating 500ps of each system was
conducted; the operating temperature was kept constant at 300K. Additional features such as
several atoms and pressure were also kept constant mimicking an isobaric-isothermal

ensemble (NPT). The system's pressure was maintained at 1 bar using the Berendsen barostat.

The total time for the MD simulations conducted were 100ns. In each simulation, the SHAKE
algorithm was employed to constrict the bonds of hydrogen atoms. The step size of each
simulation was 2fs and an SPFP precision model was used. The simulations coincided with
the isobaric-isothermal ensemble (NPT), with randomized seeding, the constant pressure of 1
bar maintained by the Berendsen barostat, a pressure-coupling constant of 2ps, a temperature

of 300K and Langevin thermostat with collision frequency of 1.0ps.

Post-Dynamic Analysis

The coordinates of the eight systems were then saved and the trajectories were analyzed
every 1ps using PTRAJ, followed by analysis of RMSD, RMSF and Radius of Gyration

using the CPPTRAJ module employed in AMBER 14 suit.
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Binding Free Energy Calculations

To estimate and compare the binding affinity of the systems, the free binding energy was
calculated using the Molecular Mechanics/GB Surface Area method (MM/GBSA) (Ylilauri
& Pentikdinen, 2013). Binding free energy was averaged over 100000 snapshots extracted
from the 100 ns trajectory. The free binding energy (AG) computed by this method for each
molecular species (complex, ligand, and receptor) can be represented as (Hayes and

Archontis, 2011):

AGping = Geomplex — Greceptor — Gligand (1)
AGping = Egas + Gso1 — TS (2)
Egas = Eint + Evaw + Eele(3)
Gsol = Ggp + Gsa(4)

The term Egag denotes the gas-phase energy, which consists of the internal energy Ejnt;
Coulomb energy Egle and the van der Waals energies Eydw. The Egas was directly estimated
from the FF14SB force field terms. Solvation free energy, Ggol, was estimated from the
energy contribution from the polar states, GGB, and non-polar states, G. The non-polar
solvation energy, SA. GSA, was determined from the solvent accessible surface area (SASA),
using a water probe radius of 1.4 A, whereas the polar solvation, GGB, contribution was

estimated by solving the GB equation. S and T denote the total entropy of the solute and

temperature respectively.
Data analysis

All raw data plots were generated using the Origin data analysis software (Seifert, 2014).
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Results

Assessing the predicted targets for the drugs and phytochemicals

Using two different methods, the SWISSPREDICTION and SWISSADME servers, the
enzymes and transporters involved in the metabolism of the four FDA-approved drugs and
the fifteen selected phytochemical compounds were predicted. The SWISSPREDICTION
server predicted all possible enzymes and transporters that are likely to be targets of the
phytochemical compounds. On the other hand, the SWISSADME predicted the possibility of
the phytochemicals compounds having pharmacokinetic effect on some cytochrome P450
enzymes (CYP450) such as CYPIA2, CYP2C19, CYP2C9, CYP2D9, CYP2D6 and
CYP3A4 and their possibility to be substrates (inducers) of Permeability glycoprotein (P-gp).
Although, the probability of DRV and SQV binding to Renin as a target was predicted to be
low, Renin is the only enzyme predicted by the SWISSPREDICTION server to be a target for
the four conventional drugs. CYP3A4 (with higher probability) and cathepsin D (lower
probability) were predicted to be targets for DRV, ATV and LPV. CYP2C19 was predicted
only for LPV. For the selected phytochemical compounds, CYP3A4 was predicted to be a
target for Geranin (GER), Apigenin (APG), Fisetin (FST), Garlic acid (GA), Luteolin (LUT),
and Naringenin (NGN). Isosteviol (IST) and NGN were only predicted substrates of P-gp.
CYPY1A2, CYP2D6, CYP2C9 and CYP2CI19 are other sub-families of cytochrome P450
enzymes predicted by the SWISSADME server to be targets for EGA, APG, LNT, BIT, GA,

IST, STG, PTA and NGN and IST.
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Pharmacokinetic effects of the phytochemical compounds on the predicted targets involved

in the metabolism of the four PI drugs

The SWISSADME server was employed to predict the pharmacokinetic effects of the

selected phytochemical compounds on the cytochrome P450 enzymes and P-glycoprotein

Table 3: Pharmacokinetic effects of phytochemical compounds on the enzymes and
transporter involved in the metabolism of the four FDA-approved Pls.

ggﬁsound Enzymes Transporter
CYP3A4 CYP2C19 P-gp
Inhibitor Inhibitor Substrate/inducers
FDA-Approved Drugs
DRV Yes No Yes
LPV Yes Yes Yes
ATV Yes No Yes
SQV Yes No Yes
Phytochemical compounds
IST No No Yes
EGA No No No
K7G No No No
EGCG No No No
NGN Yes No Yes
GER Yes No No
LNT No No No
FST Yes No No
LUT Yes No No
APG Yes No No
PTA Yes No No
STG No No No
CHD No No No
BIT No No No
GA Yes No No
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transporter involved in the metabolism of the four FDA-approved drugs. LPV was also
predicted to inhibit CYP2C19. The four drugs were predicted inducers of P-gp, while only
IST and NGN were predicted inducers of P-gp. Seven of the phytochemical compounds were
predicted to possess inhibitory activity on CYP3A4 and none of the phytochemical
compound was predicted to inhibit CYP2C19. The inhibition of CYP3A4 and P-gp by the
phytochemical compound could decrease the elimination and clearance of the four PI drugs

from the systemic circulation and the cells, respectively.

Assessing the Drug-likeness of phytochemical compounds

As shown in Table 4, three of the selected phytochemical compounds (CHD, STG and NGN)
are poorly soluble in water. However, three of the FDA-approved drugs (ATV, SQV and
LPV) were also poorly soluble. Table 4 also shows the drug likeness of the fifteen selected
phytochemical compounds compared to the four FDA-approved drugs. Nine of the
phytochemical compounds (K7G, EGA, LUT, APG, FST, BIT, GA, IST and NGN) pass the
test. Interestingly, only two of the four conventional drugs pass the drug likeness test (DRV

and LPV).
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Binding affinity of the phytochemical compounds to HIV-1 protease Enzyme (HIVpro)

Fifteen phytochemicals and its component plants and four FDA-approved protease inhibitor
drugs (PIs) were docked with HIVpro to estimate the affinity of the drugs to the enzyme in
comparison to the four known Pls (Table 5). The docking score showed the fit of the ligands
into the active site pocket of the enzyme; the more the negative the value the better the fitness
of the ligand. All PIs had better docking scores (range: -8.1 to -9.2kcal/mol) than the
phytochemical compounds, except EGA and K7G which were better than LPV. The binding
conformation of the fifteen phytochemical compounds (ligands) and the four FDA-approved

drugs were taken for further molecular dynamics and binding energy calculations.

Table 5: Docking scores for the four FDA-approved PI drugs and phytochemical

compounds.
Compounds Name Docking score (kcal/mol)
FDA Approved Drugs
SQV -9.8
DRV -9.2
ATV -8.7
LPV -8.1
Phytochemical compounds

EGA -8.3
K7G -8.1
EGCG 7.5
STG -7.5
GER -7.5
NGN 7.5
CHD -7.4
LNT -7.4
FST -7.3
LUT -7.3
APG -7.2
IST -7.1
PTA -4.8
BIT -4.6
GA -4.5
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Thermodynamic binding free energy of Phytochemical compounds to HIVpro

As molecular docking only measures the geometric fit of ligands at the active site of a
protein, molecular dynamics simulations were run for 100ns to assess the binding free energy
of each system. The more negative the values, the better the binding free energy between the
enzyme (HIVpro) and the ligands. The binding free energy of the four FDA-approved drugs
and the fifteen phytochemical compounds were determined using the MMGBSA method to
estimate the interaction strength between the FDA-approved inhibitors in comparison to the
phytochemical compounds (Table 6). ATV showed the highest binding energy out of all the
PIs and the fifteen selected phytochemical compounds. However, EGCG had better binding
energy than three conventional PIs (DRV, LPV and SQV). In addition, K7G was better than

LPV and DRV.
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Table 6. Thermodynamic binding free energy for Phytochemical compounds and FDA-

approved drugs to HIVpro

Energy Components (kcal/mol)

Complex A Evaw AEelee AGgas AGsolv AGpind
FDA-Approved Drugs
SQV -59.300+5.140 6.139+4.847 -53.161£19.400 -0.514+1.35 -53.979+4.874
DRV -43.805 £6.108 -25.424 £8.120 -69.223 £10.871 29.235 +4.206 -35.311 £4.943
ATV -65.905+4.965 -28.758+5.760 -94.664+8.314 37.824+4.796 -56.839+5.292
LPV -51.973+5.433 -27.53446.605 -79.507+7.958 38.29143.540 -44.571£3.952
Phytochemical compounds
EGCG -36.589+4.054 -76.679+£10.634 -113.26+10.265 61.364+3.586 -55.954 +2.705
K7G -45.850+4.123 -44.778+9.576 -90.628+8.503 48.269+5.467 -45.740 + 4.288
EGA -25.883+3.400 -57.201+6.132 -83.084+5.446 46.585+3.653 -38.500 £ 2.101
LUT -26.604+3.702 -48.553+£7.929 -75.157+6.895 41.611+£4.879 -37.487 +1.223
GER -46.385+4.820 -17.37545.847 -63.759+7.842 29.458+4.423 -35.532 £2.510
LNT -34.047+5.941 -11.624+2.458 -45.669+6.293 18.170+3.523 -27.486 +3.599
APG -31.671+£8.375 -16.449+2.766 -48.112+11.223 22.104+4.239 -26.017 £ 2.966
NGN -21.952+3.673 -36.188+8.717 -58.140+9.018 35.379+5.518 -22.761 +4.494
STG -20.604+4.023 20.222+4.907 -0.373+1.485 -19.216+4.776 -19.584 + 5.041
BIT -18.433+3.600 -264.05+22.483 -225.00+14.578 206.99+17.374 -18.014 +3.083
GA -18.545+6.221 -252.39+13.425 -213.60+20.032 195.98+19.394 -17.622 £2.094
IST -18.825+3.748 -254.2444.827 -215.62+12.739 198.31+£9.202 -17.315 £ 2.650
CHD -18.52+3.777 -245.58+10.393 -206.69+11.342 189.51+9.342 -17.184 £2.417
FST -17.65+4.034 -254.16+14.288 -213.67+8.384 198.16+7.323 -15.516 +3.993
PTA -21.14542.327 -17.168+3.602 -38.312+3.942 23.679+2.555 -14.633 £2.248

Structural Analysis of the Most Optimal Phytochemical-HIVpro Complexes

To further establish the mechanistic inhibitory characteristics of these four selected phytochemical

compounds (EGCG, K7G, EGA and LUT) with antiviral activity against H/Vpro, Root mean square

deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (RoG) and ligand

interaction plots were assessed. Figure 2 depicts the RMSD plot for the four phytochemical

compounds and the four FDA-approved drugs. RMSD measures protein stability as the simulation

progresses. The RMSD plots of K7G,EGA and EGCG with average values of 1.432A, 1.442A and

1.465A respectively are similar to the RMSD of ATV (1.511 A), DRV (1.451A), SQV (1.402A), apo-

enzyme, 1.342A (protease enzyme without ligand). The RMSD of EGCG seems to be close to LPV



(1.9189A). The RMSD of K7G (1.351A) was very similar to SQV (1.345 A). The RMSD of the four
compounds deviated from the RMSD of LPV with the highest average value of 2.187A.The first 40ns
of simulation of LPV showed the instability of the enzyme, but from 40 to 100ns of simulation the

enzyme was stable.
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Figure 2: RMSD profile of protein backbone atoms calculated over the course of 100 ns
molecular dynamics of HIVpro bound to the four different ligands and FDA-approved PI drugs.

Figure 3 and 4 showed the Radius of Gyration (RoG) and Root mean square fluctuations values over
the course of 100ns of simulations of the HIV-1 protease enzymes bound to different ligands. RoG is
a measure of the compactness of the protein structure. The RoG values of each of the compound were
compared to the RoG of the four FDA approved drugs (Figure 3). RoG of EGCG (17.544 A), LUT
(17.431A), EGA (17.354A) and K7G (17.455 A) shows similarity with the RoG of LPV (17.411 A),
ATV (17.327 A) and SQV (17.423 A) but deviated from the RoG of DRV (18.345 A). None of the

four compounds showed the same trend and values with RoG of DRV (18.345 A).
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Figure 3: RoG profile of protein backbone atoms calculated over the course of 100 ns molecular
dynamics of HIVpro bound to different ligands and drugs.

RMSF values monitor the fluctuation of each amino residue as they interact with the ligand

throughout a trajectory. The RMSF values of each of the four phytochemical compounds

were compared to the RMSF of the four FDA-approved drugs (Figure 4).
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Figure 4: RMSF profile of protein backbone atoms calculated over the course of 100 ns
molecular dynamics of HIVpro bound to four different ligands and FDA-approved drugs.

Figure 5 illustrates the ligand-interaction plots of the above-mentioned systems following the
100 ns trajectory. The type and number of interactions between proteins and ligands are the

major determinants of the overall binding free energy.
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Figure 5: Representation of ligand-HIVpro interactions with different amino acid residues.

Discussion

Assessing the predicted targets for the drugs and phytochemical compounds

The result of this study showed that the phytochemical compounds also target the predicted
targets for the four conventional PIs. CYP3A4 and CYP2C19, two sub families of
cytochrome P450 enzymes were predicted to be involved in the metabolism of the four FDA-

approved drugs. CYP3A4 was the predicted common target for the four conventional drugs,
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in addition was predicted to be target of LPV. This prediction agrees with the reports of Brian
et al and Bierman et al that reported CYP3A4 is the major form of cytochrome P450 enzymes
involved in the metabolism of HIV protease inhibitor drugs (Brian et al., 2011; Bierman et
al., 2009). All the four FDA-approved drugs were also predicted to be substrates of P-gp,
which is in accordance to the report of Griffin et al. that reported that P-gp was actively
involved in the metabolism of PI drugs (Griffin et al.,, 2010). A different sub type of

cytochrome P450 was predicted as targets for the some of the phytochemical compounds.

Pharmacokinetic effects of the phytochemical compounds on the predicted targets involved

in the metabolism of the four PI drugs

Several studies have also shown that both CYP3A4 and P-gp have a wide and overlapping
substrate specificity (Konig et al., 2013; Fromm, 2004), as this explained why the four PI
drugs are both inhibitors and inducers of CYP3A4 and P-gp respectively. The
pharmacokinetic effect of the phytochemicals on CYP3A4 and P-gp revealed that NGN,
GER, FST, LUT, APG, PTA and GA are inhibitors of CYP 3A4. Inhibition of CYP3A4 has
been reported to decrease the rate of elimination of drugs from the systemic circulation
thereby increasing bioavailability of drugs (Liyue et al., 2001). NGN and IST were predicted
inducers of P-gp and could increase the rate of elimination of the four drugs thereby lowering
PI drugs bioavailability (Richard et al., 2014). Other phytochemical compounds were
predicted to be non-inducers of P-gp and could possibly inhibit the activity of P-gp to
increase PI drugs bioavailability. Infection of cells by HIV has been reported to increase P-gp
expressing and reduction in CD4 count (Andreana et al., 1996) therefore, inhibitors of P-gp
and HIVpro could eventually lead to increase in CD4 count. The result of this study revealed

phytochemical compounds are predicted inhibitors of CYP3A4 and P-gp, and they could
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increase the bioavailability of PI drugs in the plasma drug, and also lower the elimination of

PIs from the systemic circulation and thereby exerting their therapeutic antiviral effects.

Assessing the Drug-likeness of Phytochemical compounds

One of the important rules in drug design is Lipinski’s rule, which is a set of five rules use to
assess the drug-likeness of a compound with pharmacological or biological activities with the
aim of examining if it possesses both physical and chemical properties to act as an orally
active drug in humans (Lipinski, 2004; Lipinski, 2012). The rule centres on the number of
hydrogen bond donors in the compound (not more than 5), the number of hydrogen bond
acceptors (not more than 10), molecular mass less than 500 daltons and partition coefficient
(logP) not greater than 5. The results showed that eight of the phytochemical compounds
(EGA, LUT, APG, FST, BIT, GA, IST and NGN) were predicted to pass the rules and would
be suitable for oral administration. Interestingly, ATV and DRV, together with the remaining

seven compounds failed up to three of the rules.

Gastrointestinal (GIT) absorption is significant for the maintenance of optimal drug levels in
the systemic circulation. For drugs or potential compounds to reach their target, they must be
absorbed from the GIT and enter the systemic circulation in sufficient quantities (Kremers,
2002). Highly absorbed drugs from the GIT will easily attain optimal concentration and exert
a pharmacological effect at its target site. Nine of the fifteen phytochemical compounds were
predicted to be highly absorbed from the GIT (EGA, LUT, APG, FST, BIT, GA, IST, NGN,
and PTA), Again, it was interesting to note that LPV was the only drug out of the four

conventional drugs that had a predicted high GIT absorption rate.

The blood-brain barrier (BBB) is a protection developed by the endothelial cells that line
cerebral microvessels (Abbott, 2002; Begley and Brightman, 2011) and drugs or compounds

that are not soluble in lipid with molecular weight greater than 400 Dalton cannot go across
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the BBB; smaller and lipophilic molecules can go across the BBB (Begley and Brightman,
2011). Therefore, the BBB permeability parameter is always considered in the development
of a drug for neuro-degenerated and related diseases. None of the four FDA-approved
conventional drugs was predicted to permeate the BBB and only two of the phytochemical
compounds (BIT and IST) were predicted to go across the BBB. These compounds are of

significant advantage in targeting viral reservoirs inaccessible by other antiviral agents.

Drug bioavailability is a measurement of the degree of absorption and fraction of a given
amount of unchanged drug that goes to the systemic circulation (Heaney, 2018). Orally and
intravenously administered drugs have different bioavailabilities as a result of some factors
like first pass-drug metabolism. It is a significant pharmacokinetic property of the drug that
must be carefully thought of when calculating drug dosages. A higher bioavailability score is
required for a drug to reach a higher and optimal concentration in the systemic circulation
and to exert notable pharmacological response. When compared with the four conventional
drugs, EGCG, GER and K7G shared the same bioavailability scores of 0.17 with ATV and
SQV. Drugs with lower bioavailability score will not reach optimal concentration in the

systemic circulation and will exert little or no pharmacological response.

Thermodynamic binding free energy of Phytochemical compounds to HIVpro

The binding free energy calculated for the four conventional drugs ranges from -
35.3114£4.943 to -56.056 + 4.978 kcal/mol, with Atazanavir (ATV) and Darunavir having the
highest and the lowest values respectively. Epigallocatechin gallate (EGCG), Kaempferol-7-
O-glucoside (K7G), Ellagic acid (EGA) and Luteolin (LUT) indicated the most optimal
binding when compared to the FDA approved drugs. It was also interesting to note that
although compounds FST, APG and NGN demonstrated relatively high docking scores,

binding free energy calculations for these systems indicated dissimilar results. This validates

98



the need for molecular dynamics simulations, which may allow for a compound to become

“comfortable” within an enzyme’s binding site.

Structural Analysis of the Most Optimal Phytochemical compound-HIVpro Complexes

The structural stability of the protein was measured following experimental simulation of the
phytochemical compounds together with the protein. Root mean square deviation (RMSD)
and root mean square fluctuation (RMSF) were studied in several molecular dynamics studies
to study conformational stability of ligands and proteins (Agoni et al., 2018; Mcgillewie and
Soliman, 2015; Munsamy et al, 2018; Ramharack et al., 2017). The deviation produced by a
protein during stimulation is a factor determining its stability, and the lower the deviation
produced the more stable the protein. Therefore, RMSD, which measures protein stability as
the simulation progresses, can be used to determine protein stability. In this study, RMSD

values for the C-alpha atoms of the amino acid residues of the protein were determined.

The RMSD of each phytochemical compound was compared to the RMSD values of the four
FDA approved drugs. The RMSD plots of three phytochemical compounds (EGCG, EGA
and K7G) were similar to the FDA-approved drugs (ATV, SQV and DRV) and apo-enzyme
(positive control), showing good enzyme stability. The RMSD value of the LUT (1.843A) is

slightly like that of LPV (2.187), as this mean similar enzyme stability after ligand binding.

The values of the radius of gyration (RoG) were also plotted for each system. RoG is a
measure of the compactness of the protein structure. The RoG values of each of the
phytochemical compounds were compared to the RoG of the four FDA approved drugs and
the apo-enzyme (Figure 3). The four phytochemical compounds shows similarity with the
RoG of three of the FDA-approved protease inhibitor drugs (LPV, SQV and ATV) and the
apo-enzyme but deviated from the RoG value of DRV. This means similar protein

compartment was observe between the three FDA-approved drugs and four compounds and
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they could confer the same stability on the protein structure and affect the protein function in

a similar way with the three FDA-approved drugs (LPV, SQV and ATV).

The RMSF values monitor the fluctuation of each amino residue as they interact with the
ligand throughout the trajectory. The RMSF values of each of the compounds were compared
to the RMSF of the four FDA approved drugs (Figure 4). The K7G (1.130) system showed the
greatest similarity to the four FDA-approved drugs, with fluctuations occurring at similar
residues at 45-55 and 145-155 (mirror residues in the dimeric form). This substantiates the

necessity of the dimeric activity of the HIV-protease (Hayashi et al., 2014).

Ligand-HIVpro interactions with different amino acid residues.

As mentioned above, ATV showed the highest free binding energy of the 19 systems. This
could possibly due to the greater number of hydrogen bond interactions produced between
the drug and HIVpro amino acid residues (ASP128, GLY 126, ASP124, THR179, ALA127,
PRO180, GLY49, GLY27, ASP25, and ILE47). The hydrogen bond interactions for SQV,
LPV, and DRV are 4, 5 and 4 respectively. A Salt-bridge interaction at amino residue ASP25,
together with numerous van der Waals, alkyl, and Pi-alkyl interactions contributed to the
SQV-system gaining second highest binding energy. With 20 van der Waals interactions and
5 hydrogen bond interactions, LPV showed higher binding energy than DRV. Of the
phytochemical compounds, EGCG demonstrated the highest binding energy. This may have
been the result of a salt-bridge interaction at ARG107, 6 hydrogen bond interactions, 13 van
der Waals and 3 Pi-alkyl interactions. It was interesting to note that the “two-component”
salt-bridges, made up of a hydrogen bond and electrostatic interaction, were only recorded
within the EGCG and SQV systems. This could have led to the overall binding energy of
EGCG being higher than K7G, despite K7G having a higher overall number of interactions.

These similar bond interactions observed and their binding energies that fall within the range

100



of the binding energies for the FDA-approved drug also make EGA and LUT to be suitable

potential inhibitors of HIVpro.

Conclusion

The analysis predicted both inhibitors and inducers of CYP3A4 and P-gp among the selected
phytochemical compounds. The phytochemical compounds predicted to be inhibitors of
CYP3A4 and P-gp could increase the bioavailability of the four FDA-approved drugs in the
systemic circulation thereby enhancing the four drugs to exert maximum pharmacological
effects. Of all the docked selected phytochemical compounds, EGCG, K7G, EGA, NGN,
STG, GER, and LUT gave the best binding score when compared to the four conventional
PlIs. The results of the MD simulations and MMGBSA showed that only EGCG, K7G, EGA
and LUT fit well into the HIVpro active site pocket with better binding free energy. The
study implied that the ligands interacted hydrophobically with the active amino residues. This
study also identified some of the key residues that are helpful in dual inhibitor design. The
EGCG and K7G compounds proved to be more potent inhibitors of HIVpro. Therefore, this
study showed that some of the phytochemical compounds could be utilised to enhance the
therapeutic effect of PIs by inhibiting both P-gp and CYP3A4. These phytochemical

compounds could as well serve as natural inhibitors of HIVpro.
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CHAPTER FOUR
The published article in chapter three described the pharmacokinetic properties and potential
antiviral activities of the selected PCs. The study showed that similar to the PIs (used as
standard), some PCs were predicted to be inhibitors and substrates of P-gp and CYP3A4
(drug-metabolizing proteins involved in the metabolism of Pls), and four PCs
(epigallocatechin gallate (EGCQG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic
acid (EGA)) were predicted to be potential inhibitors of South African HIV-1 Sub-type C
protease enzyme. In this chapter, the inhibitory potentials of these four PCs, and their
molecular mechanisms of inhibiting the two drug-metabolizing proteins, using computational
tools were described. The ability of these four PCs to act as inhibitors of drug-metabolism

proteins will be beneficial in enhancing the bioavailability and therapeutic effects of Pls.

A manuscript titled ‘Molecular Dynamic Mechanism(s) of inhibition of Bioactive Antiviral
Phytochemical Compounds targeting Cytochrome P450 3A4 and P-glycoprotein’ and has been

published by the Journal Biomolecular structure and dynamics (Appendix F).
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Molecular Dynamic Mechanism(s) of inhibition of Bioactive Antiviral Phytochemical

Compounds targeting Cytochrome P450 3A4 and P-glycoprotein

Abstract
P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4) metabolize almost all known

human immunodeficiency virus' protease inhibitor drugs (PIs). Over induction of these
proteins’ activities has been linked to rapid metabolism of PIs which are then pumped out of
the circulatory system, eventually leading to drug-resistance in HIV-positive patients. This
study aims to determine, with the use of computational tools, the inhibitory potential of four
phytochemical compounds (PCs) (epigallocatechin gallate (EGCG), kaempferol-7-glucoside
(K7G), luteolin (LUT) and ellagic acid (EGA)) in inhibiting the activities of these drug-
metabolizing proteins. The comparative analysis of the MM/GBSA results revealed that the
binding affinity (AGuind) of EGCG and K7G for CYP3A4 and ABCBI1 are higher than LUT
and EGA and fall between the AGying of the inhibitors of CYP3A4 and ABCB1 (Ritonavir
(strong inhibitor) and Lopinavir (moderate inhibitor)). The structural analysis (RMSD,
RMSF, RoG and protein-ligand interaction plots) also confirmed that EGCG and K7G
showed similar inhibitory activities with the inhibitors. The study has shown that EGCG and
K7G have inhibitory activities against the two proteins and assumes they could decrease
intracellular efflux of PIs, consequently increasing the optimal concentration of PIs in the

systemic circulation.

Keywords: P-glycoprotein, Cytochrome P450 3A4, protease inhibitor drugs, Computational

tools
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Introduction

P-glycoprotein (ABCBI1) and cytochrome P450 3A4 (CYP3A4) have been reported to play
significant roles in the metabolism of many protease inhibitors drugs (PIs). Over induction of
ABCBI and CYP3A4 has been reported to lead to rapid metabolism and elimination of Pls
from the systemic circulation, and alter PIs’ pharmacokinetics by reducing bioavailability

which can result in patients developing resistance to Pls [1, 2].

‘P-glycoprotein is an essential member of the ATP-binding cassette (ABC) superfamily and
is referred to as multidrug resistance proteins 1 (MDR1) as it is the most significant drug
transporter in the central nervous system and other tissues. It is essential proteins present in
the cell membrane, encoded in humans by the ABCB1 gene [3, 4]. As an ATP-dependent
efflux pump, ATP-binding cassette transporters have broad substrate specificity, and their
primary role is to pump many potentially toxic substances out of the cells and influence the
bioavailability of drugs and other compounds. Evidence suggests that ABC transport proteins
caused drug resistance and alter PI pharmacokinetics by reducing bioavailability and
decreasing accumulation in organs and tissues [5]. Van Waterschoot et al. (2010) reported
that all known PIs are substrates of P-glycoprotein [3], and over-expression of P-glycoprotein
reduces the concentration of PIs [6]. PlIs such as Atazanavir (ATV), Lopinavir (LPV),
Amprenavir (AMP) and Ritonavir (RTV) have been reported to be inhibitors of ABCB1 [7-

9].

Cytochrome P450 belongs to a superfamily of 25 closely related, membrane bound CYP450
enzymes containing heme as a cofactor. The enzymes can deactivate drugs, either directly or
by facilitated elimination from the system, as well as bioactivating several substances to form
their active compounds. [10]. CYP3A4 is a subtype of CYP450 and is known to metabolize

many of the PIs [11]. Ritonavir was reported to be a strong inhibitors of CYP3A4, decrease
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hepatic metabolism and eventually increase the concentration of drugs metabolized by
CYP3A4 [11]. Studies have reported substrates overlapping between the two proteins; for
example cyclosporin and ritonavir inhibits both proteins), many drug-drug interactions are
attributed to either inhibition or induction of both P-glycoprotein and CYP3A4 [6, 7]. This
substrate overlapping has prompted many to hypothesize that inhibition of CYP3A4 may be a

fundamental characteristic of inhibitors of ABCBI1 [6, 12].

In silico determination of potential antiviral activities of phytochemical compounds (PCs)
from our laboratory reported that four PCs (epigallocatechin gallate (EGCG), kaempferol-7-
glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) possess inhibitory activities against
the HIV-1 protease enzyme similar to the control FDA-approved PIs [13]. Several in vitro
studies have also reported the inhibitory activities of these four compounds against HIV-1

reverse transcriptase, integrase and protease enzymes’ activities [14-17].

One of the limitations of the current antiretroviral therapy (ARV), is the inability of ARVs to
reach sanctuary sites of HIV or suboptimal antiretroviral concentrations at these sites in the
body (sites such as central nervous system, gut-associated lymphoid tissue, lymph nodes, and
tissue macrophages) [18, 19]. This is because many ARVs are substrates of efflux
transporters and metabolic enzymes (such as P-glycoprotein and CYP3A4) [19, 20].
Inhibiting the activities of efflux transporters and the metabolism of ARV is an important
strategy in increasing the concentrations of ARV. Studies have shown that EGCG and EGA
inhibit the activities of ABCB1 and CYP3A4 [21, 22] but, no study has reported on K7G and
LUT. Athukuri et al. reported in an in vitro study that the bioavailability of diltiazem was
significantly raised when treated with ellagic acid as a result of inhibition of CYP3A4-
mediated drug metabolism and ABCB1-mediated efflux in the intestine, ileum and liver [21].

The study further reported that both the peak plasma concentration (Cmax) and area under

112



plasma concentration-time curve (AUC) were improved by the EGA treatment [21]. In a
separate study by Shaik and Vanapatla, 2019, EGA through the inhibition of ABCB1 was
reported to significantly improve the Cmax, AUC and increase the bioavailability of oral
linagliptin in rats [22]. EGCG at both 3 and 10 mg/kg significantly increase the
bioavailability of tamoxifen [23]. The bioavailability of tamoxifen was approximately twice
greater than that of the control group and the AUC was significantly increased in the presence
of EGCG. The study suggested that the increase in bioavailability of tamoxifen is due to the
decrease in first-pass metabolism in the intestine and liver by the inhibition of ABCB1 and

CYP3A4 [23].

It is therefore essential to source for natural compounds that can inhibit the activities of these
drug-metabolism proteins to boost the bioavailability of PIs in the plasma and sanctuary sites.
This study, therefore, investigated the inhibitory potentials of these PCs and their mechanism
of inhibiting these Pls-metabolizing proteins (CYP3A4 and ABCBI) using computational
tools.

METHODS

P-Glycoprotein Transporter and CYP3A4 Enzyme, Ligand Acquisition and

Preparation

The X-ray crystal structures of the P-glycoprotein 1 (PDB code: 6C0V) [24] and CYP3A4
(PDB code: 4NY4 [25]) were obtained from publicly available RSCB Protein Data Bank. The
structures of the proteins were then prepared on the UCSF Chimera software package. Two
drugs reported to be inhibitors of CYP3A4 and ABCBI, Lopinavir [27, 28], and Ritonavir
[28, 29], as well as the four antiviral PCs, were accessed from PubChem [30] and the 3-D
structures prepared on the Avogadro software package [31]. The two FDA-approved drugs

were used as positive controls.
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Figure 1. Superpositions of the crystalized structures of the natural substrates (in red)
of the proteins and the ligand-complexes (in green). a) ABCB1 b) CYP3A4 and their
respective RMSD values.

Molecular Docking

The Molecular docking software utilized in this study was the Autodock Vina Plugin
available on Chimera [32], with default docking parameters. The structure of the proteins
were prepared removing water molecules, nonstandard naming, protein residue connectivity,
missing side-chain or backbone atoms. Gasteiger charges were added to the compounds, and
the non-polar hydrogen atoms were merged to carbon atoms. The PCs were then docked into
the nucleotide-binding domain pocket of ABCBI and the active site of CYP3A4 (by defining
the grid box with a spacing of 1 A and size of 106 x 112 x 64 and 52 x 38 x 52 pointing in x,
y and z directions respectively). The two FDA-approved drugs (Lopinavir and Ritonavir)
systems, as well as the four PCs systems, were then subjected to molecular dynamics
simulations. Studies have reported both Lopinavir and Ritonavir to be inhibitors of CYP3A4

and ABCBI [27-29].
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Molecular Dynamic (MD) Simulations

The MD simulation was performed as described by Idowu et al., 2019 [13]. The simulation
were performed using the GPU version provided with the AMBER package (AMBER 18), in

which the FF18SB variant of the AMBER force field [33] was used to describe the systems.

ANTECHAMBER was used to generate atomic partial charges for the compounds by
utilizing the Restrained Electrostatic Potential (RESP) and the General Amber Force Field
(GAFF) procedures. The Leap module of AMBER 18 allowed for the addition of hydrogen
atoms, as well as CI” counter ions for neutralization all (both ABCB1 and CYP3A4) systems.
The amino acids were numbered, numbering residues 1-1242 for ABCBI1 and 1-484 for
CYP3A4. The systems were then suspended implicitly within an orthorhombic box of TIP3P

water molecules such that all atoms were within 8A of any box edge [34].

An initial minimization of 2000 steps were carried out with an applied restraint potential of
500 kcal/mol for both solutes, were performed for 1000 steps using the steepest descent
method followed by 1000 steps of conjugate gradients. An additional full minimization of
1000 steps were further carried out using the conjugate gradient algorithm without restraint.
A gradual heating MD simulation from OK to 300K was executed for 50ps, such that the
systems maintained a fixed number of atoms and fixed volume. The solutes within the
systems were imposed with a potential harmonic restraint of 10 kcal/mol and collision
frequency of 1.0ps. Following heating, an equilibration estimating 500 ps of each system was
conducted; the operating temperature was kept constant at 300K. Additional features such as
several atoms and pressure were also kept constant mimicking an isobaric-isothermal

ensemble. The system's pressure was maintained at 1 bar using the Berendsen barostat [35,

36].
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The total time for the MD simulations conducted were 100ns. In each simulation, the SHAKE
algorithm was employed to constrict the bonds of hydrogen atoms [37]. The step size of each
simulation was 2fs, and an SPFP precision model was used. The simulations coincided with
the isobaric-isothermal ensemble (NPT), with randomized seeding, the constant pressure of 1
bar maintained by the Berendsen barostat [36], a pressure-coupling constant of 2ps, a

temperature of 300K and Langevin thermostat [38] with a collision frequency of 1.0ps.
Post-Dynamic Analysis

Analysis of Root mean square deviation (RMSD), Root Means Square Fluctuation (RMSF),
Solvent accessible surface area (SASA) and Radius of Gyration (RoG) was done using the
CPPTRAJ module employed in the AMBER 18 suit [39]. All raw data plots were generated

using the Origin data analysis software [40].
Binding Free Energy Calculations

To estimate and compare the binding affinity of the systems, the free binding energy was
calculated using the Molecular Mechanics/GB Surface Area method (MM/GBSA) [41].
Binding free energy was averaged over 100000 snapshots extracted from the 100ns
trajectory. The free binding energy (AG) computed by this method for each molecular species

(complex, ligand, and receptor) can be represented as:

AGbind = Gcomplex - Greceptor - Gligand(l)

AGping = Egas + Ggo1 — TS (2)
Egas = Eint + Evaw + Eele 3)
Gsol = Ggp + Gsa (4)
Gsa = YSASA (5)

The term Egas denotes the gas-phase energy, which consists of the internal energy Eing

Coulomb energy Ecle and the van der Waals energies Evaw. The Egs was directly estimated
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from the FF14SB force field terms. Solvation free energy, Gso, was estimated from the
energy contribution from the polar states, GGB, and non-polar states, G. The non-polar
solvation energy, SA. GSA, was determined from the solvent-accessible surface area
(SASA), using a water probe radius of 1.4 A. In contrast, the polar solvation, GGB, the
contribution was estimated by solving the GB equation. S and T denote the total entropy of

the solute and temperature, respectively.

Results and Discussions

Stability and Flexibility of proteins apo and bound systems

To discover the dynamic stability of the systems and to evaluate the MD simulations, root-
mean-square deviation (RMSD) values of alpha carbon (Ca) atoms were monitored along the
entire MD trajectory for both the apo and the bound systems (Figure 2). RMSD is a measure
of system convergence and stability [42] and the deviation produced by a protein during MD
simulation is a factor determining its stability; the lower the deviation produced the more
stable the protein. As shown in figure 1a-d, the overall RMSD values of the complexes of the
four PCs and the two drugs are lower than the RMSD value of the ABCB1 apoenzyme
implying that the binding of the ligand brings more stability to the enzyme. The result
showed that the binding of inhibitors drastically influences the dynamic of P-glycoprotein,
which can be reflected in the function of the protein [43]. Unlike the RMSD pattern observed
in the apo and bound systems of ABCBI1, the binding of the four ligands raised the RMSD
values higher than the value of the apo for CYP3A4, while the values of the two FDA-
approved drugs are lower than that of the apo. However, the higher RMSD values observed
in the four PCs complexes showed that the binding of ligands does not disrupt the stability of

the enzymes (CYP3A4), and the functions of the proteins were not altered.

117



RMSD (A)

The radius of gyration (RoG)

Graphical plots of the radius of gyration were plotted for the systems after 100 ns MD
simulation. The RoG was carried out to evaluate the overall structural compactness of the
systems [44-46]. The plots of RoG for the apoenzymes and the bound ligands for both
CYP3A4 and ABCBI1 are shown in Figure 3. For the P-glycoprotein complexes, the average
values for the RoG of the PCs were compared to the average values of the two FDA-

approved inhibitors of the two enzymes. The result showed that the apo has an average value
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Figure 2: Comparative RMSD profile plots of C-a atoms of the ABCB1, RTV and LPV
with ligands, a) K7G, b) EGCG, c¢) EGA and d) LUT systems and CYP3A4, RTV and
LPV with e) K7G, f) EGCG, g) EGA and h) LUT calculated throughout 100 ns
molecular dynamics.

=

of 38.467 A. Values of 38.012 A, 38.253, 38.398 A, 38.501 A, 38.689 A and 38.872 A were

recorded for LUT, EGA, EGCG, K7G, LPV and RTV, respectively. K7G showed RoG
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values that are most similar to the average values recorded for LPV and RTV. These results
suggested that the binding of the three compounds induced conformational changes similar to
both LPV and RTV. In complex with the CYP3A4 enzyme, the average RoG values for
EGA, apo, RTV, LUT, K7G, EGCG and LPV are 22.862 A, 23.013 A, 23.113 A, 23.232 A,
23.254 A, 23.223 A and 23.652 A respectively. Similar degrees of structural compactness
were observed between RTV and LUT and K7G. The study therefore suggests that
conformational changes that occurred in K7G, EGCG and LUT induced a more favourable

structural compactness that enhances the stability of the protein in a similar way with RTV.
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Figure 3: RoG profile of protein backbone atoms calculated throughout 100 ns
molecular dynamics of ABCB1 bound RTV, LPV and ligands, a) K7G, b) EGCG, c)
EGA and d) LUT and CYP3A4 bound to RTV, LPV and ligands, e) K7G, f) EGCG, g)
EGA and h) LUT systems calculated throughout 100 ns molecular dynamics.

RMSF plots (Figure 4) showed the effect of the binding of the ligands on the behaviour of the
active residue. Higher fluctuation values indicated more flexible movements, and in contrast,

reduced values expressed restricted fluctuations during the simulation [47]. From the RMSF
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plots, the apo (ABCB1) showed the overall highest fluctuation value of 5.53 A. However, the
binding of ligands at the active sites of the protein lowered the overall fluctuation values for
the respective ligands. This agrees with the study of Pan and Stephen, 2015 that also reported
decreased in the RMSF values after ligand binding to ABCB1 [48]. RTV and LPV showed
average values of 4.52 A and 5.11 A respectively. K7G (4.301 A) and EGCG (4.33 A)
showed average RMSF values of similar to RTV (4.52 A). EGA (3.51 A) and LUT (3.07 A)
showed RMSF values lower than that the recorded values for the two inhibitors (Figure 4a-d).
The decrease in fluctuation observed in all the compounds strongly indicated that their
binding lowered dynamic residual fluctuations of the enzyme, thus inducing stability of the

complex state [39, 47].

Figure 4e-h showed the RMSF plots of both the apo and the bound systems of CYP3A4.
Similar protein fluctuation and flexibility were observed in the CYP3A4 system when
compared to the P-gp. Generally, higher fluctuation and flexibility in the amino acid residues
140 — 240 was observed in all the PCs and the two drugs bound systems of CYP3A4, and the
average fluctuation values for all the ligands (RTV 4.43 A, LPV 3.4 A, K7G 4.5 A, EGCG
434 A, EGA 4.43 A and LUT 4.23 A) are lower than the Apo values (5.77 A). When
compared with the two inhibitors, K7G, EGCG, LUT and EGA showed similar RMSF values

with RTV.

120



o
s

RMSF (A)

i
i

m
L 9&

W

ABCB1

ABCB1 +RTV
ABCB1 + LPV
ABCB1 +K1G

c—

'F

ABCB1

ABCB1

RMSF (A)

w
L

~
L

o
L

FS
1

ABCB1

ABCB1 +RTV
ABCB1 +LPV
ABCB1 +LUT

0 200

RMSF (A)

400 600

RESIDUES
e

300

4(1

T
1000 1200

CYP3A4

CYP3A4+RTV
CYP3A4 + LPV
CYP3A4 + KIG

10
“RESIDUES.

T
400

ABCB1 +RTV ABCB1 +RTV
i ABCB1 +LPV ABCB1 +LPY
ABCB1 + EGCG ABCB1 +EGA
74 7
6 64
o | -y
G 4 ’ ] " 4
3 1 | § l |
11l | | ) ‘ 4!‘ I' ‘t 1l l ( |! ‘
29 H | | | u""u"' \i ‘W b ”“ﬁpb';‘} 1 t “” )1
T -,‘lh ]I‘v RN A h"tw
1.‘(‘5-’“"""& vfo‘ﬂ!,’ﬁ i "\"ﬁ A J i 1. lm "" ij‘ W
0 T T T T T T 0
0 20 40 60 80 1000 1200 W 1000
RESIDUES ; RESIDUES
8 f g CYPIAd
g:m - ; CYP3A4+RTV
¥ 1 CYP3A4 +LPV
74 CYPIAS + LV CYPIA4+EGA
CYP3AS +EGCG
64 5
. | 5 ‘
- ) <
< ~ 44
. [ : ! |
) i s |
E 34 | | ®aq | ‘ :
I8 | | I | s |
\ | A ol o ?
2400 Al 'Ill "|‘! ' f 2" L :’yh ,%llv:‘l“" (L1 ‘!"l ;‘ﬁv:
! l?. Wt I m Jut L gL A LR A o
LRt | A LA ‘,_,ﬁ)ll 1] ik A lj,' AAN i h 'w",v'»
1T A A , e A FIFNARI TN Q
0
0 T T T T , 0 o H
0 100 200 300 40 2 0 * NgEsmU;sw W

RMSF (A)

T
800

Figure 4: Comparative RMbB plots of Residue-based average C-a fluctuations of the
apo (ABCB1), and bound with RTV, LPV and ligands, a) K7G, b) EGCG, c¢) EGA and
d) LUT and CYP3A4 bound to RTV, LPV and ligands, e) K7G, f) EGCG, g) EGA and
h) LUT systems calculated throughout 100 ns molecular dynamics.

Solvent Accessible Surface Area (SASA)

In addition to the RMSD, RoG and RMSF plots, SASA is also a vital parameter to examine

the impact of the binding of the different ligands to the two enzymes (CYP3A4 and ABCBI).

The SASA quantifies the enzyme exposure to solvent molecules [49].

In the ABCBI1 system (Figure 5a-d), the average SASA values for EGA, LUT, APO, LPV,

RTV, K7G and EGCG were 45,333.53 A2

458212 A%, 46,333.63 A2, 47,500.00 A2,

47,8333.33 A2, 48,166.67 A* and 48,723.73 A? respectively. Decline in the exposure of LPV

(at approximately 20 ns), and both EGCG and K7G (at approximately 60 ns) was observed,

followed by consistent exposure to the solvent molecules. This is an indication that the

structural integrity of the protein was altered after 20 ns for LPV and 60 ns for both EGCG

and K7G respectively. However, the progressive increase in the SASA plots after 20 ns for
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LPV and stable plots for EGCG and K7G, indicated that the enzyme structural integrity is not

altered [49]. When compared to the inhibitors, EGCG and K7G showed more similarity in
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Figure 5: Solvent accessible surface area of apo (ABCB1) RTV, LPV and ligands, a)
K7G, b) EGCG, ¢) EGA and d) LUT, and CYP3A4 bound to RTV, LPV and ligands, e)
K7G, f) EGCG, g) EGA and h) LUT systems calculated throughout 100 ns molecular
dynamics.

SASA values with both RTV and LPV. In the CYP3A4 systems (Figure Se-h), EGA
(22,000.00 A?) shows the average SASA values similar to RTV (21,833.33 A?), while EGCG
(22,821.33 A?%), K7G (22.333.33 A?) and LUT (22,166.62 A?) showed similar values with

LPV (22,333.33 A?).
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Table 1. Thermodynamic Binding Free Energy for PCs and Inhibitors of ABCB1 and
CYP3A4

Energy Components (kcal/mol)

P-gp (ABCB1)

Complex AEvaw AEciec AGygas AGgoy AGbina
Inhibitors
RTV -64.77+5.04 -31.62+9.99 -71.39+13.32 36.074£9.21 -60.33+5.52
LPV -65.42+4.74 -40.37+£5.98 -105.79+6.73 60.92+5.87 -44.87+4.02

Phytochemical Compounds

EGCG -51.36+4.60 -84.47+9.55 -135.8348.56 72.89+5.41 -52.9445.73
K7G -58.39+5.63 -47.27+12.30  -100.66+14.85 62.66 £8.36 -42.01+3.86
EGA -38.61+4.84 -31.32+18.94 -69.93+15.81 40.19+8.93 -29.73 £8.02
LUT -35.66+3.37 -18.26+9.16 -53.92+10.34 29.01+£5.40 -24.9245.85

CYP3A4

Inhibitors
RTV -81.94+4.98 -36.2148.22 -122.15+£10.89 47.97+4.38 -70.188+5.28
LPV -66.94+4.31 -23.1548.69 -90.09+9.88 44.79+6.14 -43.299+5.80

Phytochemical Compounds

EGCG -53.21+4.09 -73.97+11.42 -126.18+10.84 73.97+5.66 -54.21+4.42
K7G -50.32+4.39 -57.43+11.76 -105.75+11.01 60.98+7.65 -48.77 +£4.23
EGA -39.54+3.31 -38.63+11.53 -76.16+£10.28 33.9545.72 -46.21+ 3.32
LUT -36.97£3.19 -25.85+5.30 -62.82+5.71 26.34+4.32 -36.47+3.03

Thermodynamic binding free energy of the inhibitor drugs and PCs to CYP3A4 and
ABCB1

After the 100 ns MD simulation, the binding free energy (AGuind) Was calculated using the
MM/GBSA method. The MM/GBSA calculations have been widely used to evaluate the total
binding energy of compounds to protein [41, 50-54]. From the MD trajectory analysis, the
affinity of a ligand to a protein is computed. The binding energies of all the ligands (both the
conventional drugs and compounds) were calculated, to understand the inhibitory potentials

of the ligands (Table 1).
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RTV, a potent inhibitor of both CYP3A4 and ABCB1 showed the highest AGpina 0of -60.326
kcal/mol and -70.188 kcal/mol ABCBI1 and CYP3A4, respectively. This was expected
asRTV has been reported to be a potent inhibitor of both proteins and is currently used in
combination with HIV PIs [55]. EGCG has the second highest AGping of -52.941 kcal/mol and
-54.207 kcal/mol in ABCBI and CYP3A4, respectively. The two AGuing values recorded in
both CYP3A4 and ABCBI are higher than the binding energies calculated for LPV in both
CYP3A4 and ABCBI1, which is an indication that EGCG might be useful as an inhibitor of
the two drug-metabolising proteins. There is little difference in the AGyping of LPV (-44.874)
and K7G (-42.001) in ABCB1 complex; however, in CYP3A4 K7G (-48.769) binding energy
was higher than LPV (-43.299). EGA and LUT have AGyinq values far lower than RTV and
LPV in ABCBI1 complexes. These binding energy values might suggest that EGCG and K7G
could inhibit the activities of both CYP3A4 and ABCBI1 at levels better than LPV. RTV was
reported to be a stronger inhibitor of ABCB1 and CYP3A4 than LPV (moderate inhibitor);
None of the PCs showed binding energies as high as RTV, however since they display
qualities of a moderate inhibitor, their use in ARV therapy to increase plasma concentrations

warrants further investigation.

Protein-Ligand interaction with ABCB1 and CYP450 3A4

To further establish the mechanistic inhibitory characteristics of the four phytochemical
compounds, protein-ligand interaction plots were assessed. Figure 6 showed the amino acid
residues at the nucleotide binding domain (NBD) of ABCBI1 (figure 6A) and the catalylict

site of CYP3A4 (figure 6B).

Protein-ligand interaction has been used widely to examine the molecular interactions
between residues at the active sites of a protein and bound ligands [13, 56-58]. The effect of

the binding of the different ligands on ABCB1 and CYP3A4 was analysed and the
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interactions between the critical residues at the binding sites in the presence of the two known
inhibitors (RTV and LPV) and the four tested PCs was plotted. Figures 7 and 8 not only
shows a 2D visualisation of the interactions between the ligands and the proteins, but also
showed different types of interactions observed in the protein-ligand plots. Interactions such

as hydrogen bond, ionic interaction, n-Sulfur, n-cation interaction, and Van der Waals (vdW)

overlaps can be observed.
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Figure 6: Amino acid Residues at the NBD of ABCB1 (A) and catalytic site of CYP3A4
(B).

In P-glycoprotein (ABCB1) apo and bound systems (Figure 7), more interactions were
observed in RTV (24) than LPV (22) and the tested PCs (EGA 12, LUT 13, K7G 18 and
EGCG 20). This correlates with the highest binding free binding energy recorded for RTV
(Table 1). LPV only showed similar types of interactions with RTV at amino residues
Leull4l, Vall135 and Lys1134, however there were less number of interactions in total
amino residues in LPV when compare with RTV, which also correlates with the lower

binding energy recorded for LPV when compared with RTV.
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K7G and LUT showed similar type of interactions with LPV at amino residues Glu868,
Val134, Thr1140, Aspl130, 11e867, Phe870, Phel29, Hiel32 and Aspl137. At residues
Cys397, Leul142, Ser1143, Gly396, 1le375 and Tyr367, EGA showed similar interactions
with RTV. EGCG showed no similarity in protein-ligand interactions with LPV, however, it
showed some similarity with RTV at amino acid residues Thr367, GInl141 and Leull42,

suggesting that EGCG and EGA inhibit ABCBI in a related mechanism to RTV.
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Figure 7: Representation of Protein (ABCB1)-ligand interactions plots with different

amino acid residues.

As shown in Table 1, RTV has the highest free binding energy, higher than LPV and the four
PCs complexes. This is due to the number and type of interactions between the individual
RTV and the active site amino acids of the CYP3A4 (Figure 8). As shown in the ligand-
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protein interaction plots, there is a total of 28 interactive bonds (19 hydrogen and Van der
Waal bonds, 2 Pi-cation bonds, 6 Pi-alkyl bonds and 1 Pi-Pi bond) between RTV and the
active site amino residues of CYP3A4. These bonds significantly contributed to its over-all

binding energy.

RTV has the highest number of interactions, higher than EGCG (22 bonds), K7G (18 bonds),
LUT (18 bonds) and EGA (12 bonds). While K7G and LUT showed the same number of
bonds (18 bonds) they showed different binding affinity (-48.769 kcal/mol and -46.214
kcal/mol, respectively). This can be attributed to two pi-cation bonds in K7G compared to
one Pi-cation bond in LUT. Similar interactions were observed at amino acid residues Phe34,
Arg82, Phe85, Argl89, Phel92, Phe281, Ala282, Ile346, Met348, Arg349, Leu350, Glu351,
Gly413, Asn418 and Gly458 between LPV and RTV. The four PCs showed some similarity
in term of interactions with both inhibitors: K7G (Phe34, Arg82, Phe85, Argl89, Phel192 and
Phe281 for LPV and Arg83, Phel190, Phe218 and Thr286 for RTV), EGCG (Arg82, Phel92,
[le346, Phe34, Phe85, Met348, Arg349, Leu350, Glu3s1, Gly413, Asn418 and Gly458 for
LPV and Phe34, Arg82, Arg83, Phe85, Phel92, 1le346, Ala347, Met348, Arg349, Leu350,
Glu351, Arg352, Phe412, Gly413, Argdl7, Asn4l8, Cys419 and Gly458 for RTV). The
interaction plot showed that EGCG has similar type of interactions with RTV than LPV. This
therefore suggests that it could inhibit CYP3A4 in similar way with RTV. The numbers of
interactions of LUT and EGA with CYP3A4 are lower than that of RTV and LPV, however,
the they showed some similar interactions (Phe34, Arg82, Arg83, Phe85, Ser%96, 11e97,
Phe190, Phel92, Arg349 and Glu351) with the two inhibitors, indicating they could be

moderate inhibitors of CYP3A4.
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Figure 8: Representation of Protein (CYP3A4)-ligand interaction plots with different

amino acid residues.
Conclusion

P-glycoprotein and CYP3A4 have been reported to play essential roles in controlling plasma
concentrations of drugs, and their absorption and excretion. The inhibitory potentials of four
phytochemical compounds and their mechanism(s) of inhibiting ABCB1 and CYP3A4
enzymes were examined using a combination of MD simulation and MM/GBSA free energy
calculations. The MM/GBSA binding free energies showed that the binding energies (AGuind)
of both EGCG and K7G for the two proteins (ABCB1 and CYP3A4) are higher than LUT

and EGA and fall between the AGuina of the standard inhibitors (RTV and LPV) of both
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proteins. Structural analysis of the bound systems and the apo of the two proteins also
confirmed that the binding of the compounds (EGCG and K7G) at the active sites of the two
proteins does not alter the structural integrity of the proteins. The results further showed that
there are similar interactions between the drugs and the compounds, suggesting potential
inhibitory similarities between the drugs and compounds. This study suggests that EGCG,
EGA and K7G showed more similarity with RTV in their interaction with CYP3A4. While
similar interactions were observed between K7G and LPV, and EGCG and RTV respectively
in P-glycoprotein systems. This result suggests that EGCG and K7G might be a suitable
substitute for RTV in its use as a booster for HIV protease drugs. And eventually increase the
optimal concentration of PIs in the systemic circulation by inhibiting the clearance and the
rate of metabolism of PIs from the circulating system thereby, enhancing the therapeutic

effect of the PI drugs.
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CHAPTER FIVE
The in-silico studies in chapter three and four have predicted the pharmacokinetic properties
of the selected PCs and their effects on the activities of Pls drug-metabolising proteins
(CYP3A4 and P-gp). These were predictive studies and there significant findings necessitated
an in vitro study to evaluate of the effects of the four promising antiviral PCs (EGCG, K7G,
LUT and EGA) on cytotoxicity, cell viability profiles and regulatory influences on the
mRNA and protein expressions of CYP3A4 and P-gp/ABCBI1 in two human cell lines (liver

(Hep-G2) and kidney (HEK-293)).

A manuscript titled ‘Evaluation of Cytotoxicity, Cell Viability and Modulatory Influences of
Antiviral Bioactive Compounds on mRNA Expressions and Protein activities of Cytochrome
P450 3A4 and P-glycoprotein in HepG2 and HEK293 cell lines’ is under review for

publication.
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Modulatory Influences of Antiviral Bioactive Compounds on Cell Viability, mRNA and
Protein Expression of Cytochrome P450 3A4 and P-glycoprotein in HepG2 and
HEK?293 cells

Abstract

The induction of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (ABCB1) influences
drug plasma concentrations, and eventually decreases the drugs’ therapeutic effects. The
effects of Plant-derived compounds (PCs) on drug-metabolising proteins are largely
unknown. This study investigated the cytotoxicity, cell viability profiles and regulatory
influences of four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G),
luteolin (LUT) and ellagic acid (EGA)) on the mRNA and protein expression of CYP3A4 and
ABCBI in HepG2 and HEK?293 cells. After treatment with the PCs (0-400 uM) for 24 hours,
80% (IC20) and 50% (ICso) cell viability were determined. The PCs were not toxic to HepG2,
ATP levels increased at 1Czo, there was insignificant change in LDH (lactate dehydrogenase),
with the exception of LUT, and ABCBI protein expressions decreased. The PCs decreased
CYP3A4 at ICy (except LUT), EGCG and K7G at ICy decreased mRNA expression. For
HEK?293 cells, no significant change in ATP was observed, except for EGCG 1Cy and K7G
ICso which decreased and increased, respectively. LDH decreased at ICyo, but at ICso there
was a significant increase in LDH following LUT treatment. ABCB1 protein expression
increased at both 1C20 and IC50, but LUT and EGA at ICso decreased mRNA expression.

The PCs at 1Cz0, and 1Cso of LUT, K7G and of EGCG may enhance drug bioavailability.

Keywords: Cytochrome P450 3A4, P-glycoprotein, Cytotoxicity, Cell viability profile,

Regulatory influence.
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INTRODUCTION

Plants have been reported to be a good source of natural bioactive compounds that can be
used as models for the development and synthesis of new potent drugs. Rates (2001) reported
that about 25 % drugs prescribed in the world were derived from plants [1]. Several
phytochemical compounds found in plants including flavonoids, tannins and phenols have
been reported by several studies for the treatment of different diseases due to their inhibitory
and antiproliferation activities against diseases [2]. The use of these plant-derived compounds
is gaining popularity in the treatment of various diseases like cancer [3], human

immunodeficiency virus (HIV) [4, 5] and in the discovery of many potential drugs.

In silico studies by Idowu et al. (2019 and 2020) reported four plant-derived compounds;
(epigallocatechin gallate (EGCQG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic
acid (EGA)) (Figure 1) to be potential inhibitors of cytochrome P450 3A4 enzyme (CYP3A4)
and P-glycoprotein transporter (ABCB1) [6, 7]. These two proteins have been reported to
mediate or restrict pharmacokinetic properties such as absorption, distribution, metabolism
and excretion of drugs [8]. Indeed, the significant roles of CYP3A4 and ABCBI in the
metabolism of drugs like antiretroviral protease inhibitor drugs (PIs) have been widely
studied and established. The induction of their proteins or overexpression of their genes in
response to drugs or compounds that can modulate their activities can cause dangerous
adverse interactions and compromised therapeutic consequences [9]. Marchetti et al. (2007)
suggested that the alteration of their expressions and activities might be a beneficial strategy

to improve the effectiveness and safety of drugs like the PIs [9].

This study therefore evaluated the modulatory influences of four phytochemical compounds
(EGCG, K7G, LUT and EGA) present in some of the herbal medicines (COA-herbal

medicine, Imbiza Herbal, Ingungumbane Mahlabizifo, Ngoma herbal and many more) [10]
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used by HIV positive patients in South Africa on the protein activities and gene expressions
of CYP3A4 and ABCBI in conjunction with their cytotoxicity and cell viability profiles in

two human cell lines (HEK293 and HepG2).

Epigallocatechin gallate (EGCG)

H o
o, "o
H
H
H" H 0" H 0
y 0

Kaemperol-7-glucoside (K7G) Ellagic acid
(EGA)

Figure 1. Molecular structures of Luteolin, Ellagic acid, Kaempferol-7-glucoside and

Epigallocatechin gallate[11]
2. METHODS
2.1. Cell Culture:

Cells were obtained from the laboratory of Medical Biochemistry department, College of
Health Science, University of KwaZulu-Natal. HepG2 and HEK293 cells were cultured at
37°C, in 5% CO; in complete culture media (CCM): minimum essential medium

supplemented with 1% L-glutamine, 1% penstrep-fungizone and 10% foetal bovine serum.
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According to their requirements, Eagles minimum essential medium (EMEM) and Dulbecco's

Modified Eagle's Medium (DMEM) were used for HepG2 and HEK293 cells, respectively.

2.2. Preparation of Compounds:

The four compounds were purchase from Sigma-aldrich, Johannesburg 1645 South Africa.
Stock solutions (400 uM) for the MTT assay were prepared for each of the compounds by
dissolving 1mg in the respective CCM for the cells. Subsequent treatments were diluted from

the stock solution.

2.3. Cell Viability Assay:

Cells were seeded in a 96-well microtitre plate at a concentration of 20,000 cells/well (200ul
CCM), and allowed to attach overnight (37°C, 5% CO>). Cells were then subject to treatment
in triplicate with each compound (0-400uM). Following a 24h incubation, the MTT assay
was performed, where the cells were incubated (37°C, 4h) with MTT substrate (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (1 : 5 5mg/ml in 0.1M PBS : CCM).
After that, supernatants were aspirated, and cells were incubated in dimethyl sulphoxide
(DMSO; 100ul/well) for 1h. Optical density (OD) was then measured at 570nm, with a
reference wavelength of 690nm by an enzyme-linked immunosorbent assay (ELISA) plate
reader (BioTek pQuant, USA). The percentage cell viability was calculated, and the log
concentration-response curves were plotted using GraphPad Prism version 5.0 software
(USA) to extrapolate the half maximum inhibitory concentration (ICso) and concentration that
produced 20% inhibition of cell viability (IC20). For subsequent assays, the cells were treated
at 80% confluency with both ICso and IC>o concentrations of the respective compounds for

24h.
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2.4. Adenosine Triphosphate (ATP) Assay:

Adenosine triphosphate (in relative light units, RLU) was evaluated by the luminometric Cell
Titer-Glo® assay (G775A, Promega, Madison, Wisconsin, USA) [12]). Treated cells were
seeded in triplicate in a white microtitre plate (20,000 cells per well in 50ul PBS) and 50ul
ATP Cell Titer-Glo Reagent was added to each well. The plate was incubated for 30 minutes
(30min) at room temperature (RT). Luminescence was measured on a Modulus™ microplate
luminometer (Turner BioSystems, Sunnyvale, California, USA). Luminescence is

proportional to ATP concentration and was expressed as relative light units (RLU).

2.5. Lactate Dehydrogenase (LDH) Assay:

The LDH cytotoxicity detection kit (Roche, Mannheim, Germany) was used to measure cell
death/damage [13]. The cell culture medium was aspirated following treatment with the
respective compounds and used to measure extracellular LDH activity. The cell culture
supernatant (100ul) was transferred into a microtitre plate in triplicate. Subsequently,
substrate mixture (100ul) containing catalyst (diaphorase/NAD") and dye solution
(INT/sodium lactate) was added to the supernatant and allowed to react at ambient
temperature for 25min as per the manufacturer's instructions. The optical density of the
resulting formazan product was measured at 500nm with an ELISA plate reader

(BioTekpuQuant), USA). Results are represented as mean optical density.

2.6. Western Blot (WB):

Cytobuster™ reagent (Novagen) supplemented with protease and phosphatase inhibitor was
used for protein isolation. Cytobuster (200ul) was added to the treated cells (4°C, 15min) and
centrifuged (180xg; 4°C, 10min) to obtain a crude protein extract. Protein samples were

quantified using the Bicinchoninic Acid (BCA) assay and standardised to 1mg/ml. Samples
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were then denatured by boiling for Smin with a 4:1 dilution of 5 x Laemmli sample buffer
[0.375 Tris-HCL pH 6.8;10% w/v SDS; 3% v/v glycerol; 2% w/v bromophenol blue; 12% f-

mercaptoethanol in dH2O].

Samples were electrophoresed on 10% SDS-PAGE gels, run at 150V. Transfer to
nitrocellulose membranes was conducted using the Bio-Rad Trans-Blot Turbo Transfer
System (25V, 2.5A, 30min). Membranes were blocked with 5% bovine serum albumin (BSA)
in Tris buffer saline containing Tween 20 (20mM Tris-HCI (pH 7.4), 500mM NaCl and 0,5%
Tween 20 (TTBS)) for 1h, and probed overnight at 4°C with anti-CYP3A4 (13384S, Cell
Signalling) and anti- ABCB1 (13342S, Cell Signalling) diluted to 1:1000 in 5% BSA in

TTBS.

Membranes were then washed four times (10ml TTBS, 15min) and treated with horseradish
peroxidase (HRP)-conjugated secondary antibody (goat anti-rabbit; rabbit anti-mouse: 1:2500
in 5% BSA:TTBS, 1h, RT). Membranes were washed four times (TTBS, 15min) and
immunoreactivity was detected by Clarity ECL substrate (Bio-Rad). Images were captured
and analysed with the Bio-Rad imaging system (Molecular Imager® Chemidoc XRS and
Bio-Rad ImageLab software; Bio-Rad, Hercules, CA). Membranes were stripped with 30%
hydrogen peroxide (H202), rinsed thrice in TTBS, blocked in 5% BSA:TTBS (1 h; RT) and
probed with HRP-conjugated anti-f-actin (Sigma, St Louis, Missouri, USA). The results were
expressed as mean relative band density (RBD), which is relative to the loading control and

housekeeping protein B-actin.
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2.7. Quantitative Polymerase Chain Reaction (PCR)

2.7.1. Ribonucleic Acid (RNA) Isolation

The control and compounds treated cells were washed with phosphate buffer saline (PBS),
then 500ul Qiazol reagent (Qiagen) diluted in 500ul 0.1M PBS was added to each flask. The
contents were scraped and transferred to an eppendorf for overnight storage at -80°C.
Chloroform (100ul) was added to thawed samples and centrifuged (12,000xg, 15min, 4°C).
The aqueous upper phase was transferred to a new eppendorf followed by the addition of
250ul propan-2-ol and stored overnight at -80°C. The thawed samples were centrifuged
(12,000xg, 20min, 4°C). The resulting sample pellet was washed with 75% cold ethanol and
centrifuged (7,400xg, 15min, 4°C). The ethanol was aspirated, and the RNA pellet was
resuspended in 15ul nuclease-free water. The RNA was quantified (Nanodrop 2000) and

standardised to 1000ng/ul.

2.7.2 Complementary Deoxyribonucleic Acid (cDNA) synthesis

A 20ul reaction volume containing 1ul RNA template, 4ul 5X iScript™ reaction mix, 1ul
iScript reverse transcriptase and nuclease-free water was used to synthesise cDNA (iScript™
cDNA Synthesis kit (BioRad; catalogue no 107-8890). Thermocycler conditions were 25°C

for S5min, 42°C for 30min, 85°C for Smin and a final hold at 4°C.

2.7.3. Quantitative (PCR)

The mRNA expression of CYP3A4 (forward: 5'-
CATCCCAATTCTTGAAGTATTAAATATCT -3, reverse: 5'-
TTGTGGGACTCAGTTTCTTTTGAA -3", and ABCBI (forward: 5'-
AAGGCCTAATGCCGAACACA -3, reverse: 5'- TTTGCCATCAAGCAGCACTTT -3")
were investigated using quantitative PCR (qPCR). Amplification proceeded in triplicate, in a
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25ul reaction consisting of 12.5ul 5X iScript reaction mix, 2l of cDNA, 1ul of the primer set
and 9.5ul of RNase-free water. Thermocycler conditions were initial denaturation (95°C,
4min), 37 cycles of denaturation (95°C, 15s), annealing (57°C, 40s) and extension (72°C,
30s). The plate was read at the end of every cycle (CFX96 Touch™ Real-Time PCR
Detection System (BioRad)). The housekeeping gene, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was run under the same conditions. Analysis of results was
conducted as per the method described by Livak and Schmittgen, (2001) [14]. Results are
expressed as fold change (2-AACt) relative to the housekeeping gene, GAPDH (forward: 5'-
TCCCTGAGCTGAACGGGAAG -3, reverse: 5'- GGAGGAGTGGGTGTCGCTGT -3') and

control [10].

2.8. Statistical Analysis:

Statistical analyses were performed using GraphPad Prism version 5.0 software package
(GraphPad PRISM®) and Microsoft excel 2010. Data are expressed as mean + standard error
of the mean (SEM). Dose-response-Inhibition (Log(inhibitor) vs. normalized response) was
used for the MTT assay. Comparisons were made using the unpaired Student z-tests using

Welch correction. Statistical significance was set at 0.05.

3. RESULTS

3.1. MTT Assay:

The dose-response was determined using concentrations in the range 0 to 400 uM for 24h
(Figures 2 and 3). Analysis of the dose-dependent cell viability curves show that HepG2 (ICso
= 140 uM) are more sensitive to the effects of EGCG, compared to HEK293 cells (ICso =
1075 uM). Table 1 showed the summary of the calculated IC29 and ICso concentrations.

Figure 2 shows that the treatment of HepG2 cells with the compounds yielded cell viability
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above 75% at the highest concentrations tested, with only EGCG decreasing cell viability
below 50%. HEK293 cells demonstrated greater sensitivity to the effects of K7G (56 uM),
LUT (353 uM) and EGA (207 uM) (Figure 3, Table 1) compared to HepG2 cells (842.60
uM, 1466.00 uM and 1187.00 uM respectively) (Figure 2, Table 1). The dose-response
curves further revealed that the compounds are less toxic to the two cell lines at their ICz

concentrations (Table 1).
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Figure 2: Cell viability (MTT assay) of HepG2 cells treated with (A) K7G, (B) EGA, (C)
LUT and (D) EGCG. Data is represented as a percentage relative to the untreated control (0
uM). A concentration-dependent reduction in HepG2 cell viability after treatment with the

different compounds.

HEK?293 cells are more sensitive than HepG2 cells to the cytotoxic effects of the compounds,
as cell viability reached 50% and lower for all treatments (Figure 3). The HEK293 ICso
concentrations are significantly lower than those extrapolated for HepG2, further
demonstrating their sensitivity (Figure 3, Table 1). However, HEK293 cells demonstrated
tolerance to EGCG over a wide concentration range, and a high ICso was calculated (1075

uM) compared to HepG2 cells (140.8 uM).
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Figure 3: Cell viability (MTT assay) of HEK-293 cells treated with (A) K7G, (B) EGA, (C)

LUT and (D) EGCG. Data is represented as a percentage relative to the untreated control (0

uM). A concentration-dependent reduction in HEK-293 cell viability after treatment with the

different compounds.

Table 1. Result of analysis of the dose dependent curve showing ICzo and ICso of the
compounds on HepG2 and HEK293 cells.

Compounds HepG2 HEK?293
I1C20 (M) ICso (nM) I1C20 (uM) ICso (nM)
EGCG 25.12+2.37 140.80 £ 4.58 218.78 £5.34 1075.00 = 8.77
K7G 7.76 £1.23 842.60 + 8.38 31.62 +3.89 56.00 +£2.33
LUT 26.30+3.11 1466.00 +9.78 9.55+0.74 353.20+6.29
EGA 14.79 £ 0.62 1187.00 = 12.41 10.96 = 1.40 207.10 £7.17
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3.2. ATP Assay:

The effect of both IC2 and ICso concentrations of the compounds on cellular ATP
concentration in HepG2 and HEK293 cells was investigated to examine the mitochondrial
activity and cell viability. The ICso treatments of HepG2 cells-maintained ATP concentration
similar to the control (Figure 4A), while significant increase in ATP concentration was
recorded for all 1Cy treatments (Figure 4A). For EGCG IC2 (14.8 x 10° RLU), 2.85 fold
increase was observed when compared to the control (5.2 x 10° RLU); a 3.5-fold increase was
noted for K7G IC2 (18 x 10° RLU, p< 0.05), while LUT IC29 and EGA 1Cy recorded 2.3-fold
(p< 0.05) and 3.7-fold (p < 0.05) increases in ATP concentration respectively compared to
the control. In HEK293 cells, the ICso concentration of EGCG reduced ATP levels, with a
significant 13.1-fold decrease (0.8 x 10° RLU) compared to the control (10.05 x 10° RLU;p <
0.05) (Figure 4B). A non-significant decrease in ATP was also noted for the ICso treatment
of LUT and EGA. However, ICso treatment with K7G significantly increased ATP level by
2.5-fold compared to the control (Figure 4B). While the 1Cyg treatment of HEK293 cells with
EGCG reduced cellular ATP levels, all other IC»o treatments-maintained ATP concentration

similar to the control (Figure 4B).

3.3. LDH Assay:

Results of the LDH assay are presented as mean optical density (OD)/relative viability to
investigate the effects of the compounds on the membrane integrity of the cells. In HepG2
cells, only the ICso of LUT significantly increased the extracellular level of LDH (Figure 4C)
by 0.5-fold (0.532 OD) compared to that of the control supernatant (0.311 OD); all other ICso
treatments maintained extracellular LDH similar to the control (Figure 4C). The ICxo
treatments of HepG2 cells decreased (EGCG, K7G), maintained (LUT) or increased (EGA)

extracellular LDH relative to the control (Figure 5A), but these differences were not
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significant. In HEK293 cells, the ICso of EGCG decreased extracellular LDH, K7G
maintained these levels relative to the control. Increases in LDH concentrations were noted
for LUT (p < 0.05) and EGA (Figure 4D). The extracellular LDH levels were reduced at all
ICy treatments of HEK293 cells, with significant (p < 0.05) 3.14-fold, 1.91-fold and 2.19-

fold decrease for EGCG, K7G and LUT respectively (Figure 4D).
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Figure 4. Intracellular ATP levels (A and B) and Extracellular LDH levels (C and D) in
HepG2 and HEK?293 cells treated with both ICy0 and ICso of EGCG, K7G, LUT and EGA.

Protein and mRNA expression of ABCB1

All treatments induced a significant decrease (p < 0.05) in ABCB1 protein activity in HepG2
cells (Figure 5A). Both ICso and ICz0 concentrations of EGCG (0.061 RBD for ICso, 0.06

RBD for ICz0) and EGA (0.042 RBD for ICso, 0.41 RBD for IC20) induced similar changes in
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ABCBI protein concentration when compared to the control. However, the ICz¢ concentration
of K7G decreased ABCBI1 protein concentration to lower levels than the ICso concentration
(0.058 for ICso, 0.04 RBD for 1C20), while the ICso concentration of LUT was more effective
at reducing ABCB1 protein activity than the IC20 concentration (0.04 RBD for 1Cso, 0.06
RBD for ICyo) relative to the control. The ICyo treatment of all the compounds significantly
increased (p < 0.05) the mRNA expression of ABCBI1 (Figure 5B), which was decreased at
ICso of EGCG (0.34-fold change), LUT (0.52-fold change) and EGA (0.63-fold change)

compared to the control.

All treatments induced an increase in ABCBI1 protein expression in HEK293 cells (Figure
5C). Treatment with the ICz concentration of EGCG, K7G and EGA induced a concentration
dependent decrease in ABCBI1 protein expression towards control levels (0.05 RBD). EGA at
both 1Cyp showed increase in the ABCBI protein quantity in HEK293 cell. In contrast, the
ICs0 concentration (1466.00 uM) of LUT was more effective at reducing ABCBI1 protein
quantity than the 1C>o concentration (26.30 uM) relative to the control in HEK293 cells. In
Figure 5D, treatment with 1Cyo concentration of EGCG induced a significant 8.87-fold
increase in the ABCB1 mRNA expression compared to the control. No significant difference
was recorded after treatment ICz concentrations of K7G (1.87-fold change), EGA (1.15-fold
change), LUT (1.15-fold change), and ICso concentrations of EGCG (2.01-fold change) and
K7G (2.00-fold change). EGA (0.06-fold change) and LUT (0.03-fold change) reduced

mRNA expression of ABCB1 at ICso concentrations.
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Figure 5: Effects of the compounds at ICy0 and ICso concentrations on ABCBI1 protein and

mRNA expression in HepG2 cells (A and B) and in HEK293 cells (C and D). (A) The

representative western blot (WB) and relative densitometry illustrating differences in the

concentration of crude ABCBI1 protein in HepG2 cells cultured for 24 h in the presence of

ICy0 and ICso concentrations of the compounds. (B) Representation of RT-PCR analysis

demonstrating changes in ABCB1 mRNA levels in HepG2 cells. (C) The representative WB

and relative densitometry illustrating differences in the level of crude ABCBI1 protein in

HEK293 cells cultured for 24 h in the presence of 1Cy and ICso concentrations of the

compounds. (D) Representation of RT-PCR analysis demonstrating changes in ABCBI

mRNA levels in HEK293 cells. In the densitometric analysis, bars represent the means + S.D

of four independent experiments. *Significantly distinct from the value of the control (p <

0.05).
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3.4. Protein and mRNA expression of CYP3A4

All ICsp treatments induced a significant increase in CYP3A4 protein expression in HepG2
cells (Figure 6A). With the exception of the IC20 of LUT and EGA that increased CYP3A4
protein expression relative to the control, all other ICz treatments significantly reduced
CYP3A4 protein expression. When compared to the control, the IC2o concentrations of EGA
(57.222-fold change), LUT (37.32-fold change) and ICso of EGA (18.2-fold change) showed
significant increase in CYP3A4 mRNA expressions in HepG2 cells (Figure 6B). No
significant increase in CYP3A4 mRNA expressions was observed in ICzo concentrations of
EGCG (4.72-fold change), K7G (6.56-fold change) and ICso concentrations of EGCG (0.23-

fold change), K7G (0.3-fold change) and LUT (0.43-fold).
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Figure 6: Effects of the compounds at 1C20 and ICso concentrations on CYP3A4 mRNA and
protein expression in HepG2 cells (A and B) and in HEK293 cells (C and D). (A) The

representative of WB and relative densitometry illustrating differences in the level of crude

CYP3A4 protein in HepG2 cells cultured for 24h in the presence of ICz and ICso

concentrations of the compounds. (B) Representation of RT-PCR analysis demonstrating

changes in CYP3A4 mRNA levels in HepG2 cells. (C) The representative WB and relative

densitometry illustrating differences in the level of crude CYP3A4 protein in HEK293 cells

cultured for 24h in the presence of ICy and ICso concentrations of the compounds. (D)

Representation of RT-PCR analysis demonstrating changes in CYP3A4 gene levels in

HEK293 cells. In the densitometric analysis, bars represent the means + S.D of four

independent experiments. *Significantly distinct from the value of the control (p < 0.05).

152



Treatment with 218.78 uM EGCG (ICz0) induced significant increase in CYP3A4 protein
activity in HEK293 cells, while protein expression was slightly decreased after treatment
with EGCG at the ICso concentration (Figure 6C). No significant difference in CYP3A4
protein quantity was also observed after treatment with ICzo concentrations of K7G (0.195
RBD), EGA (0.341 RBD) and ICso concentration of EGA (0.322 RBD) compared to the
control (0.280 RBD). Treatment with ICso concentration of LUT (0.04 RBD), ICso
concentrations of LUT (0.05 RBD) and K7G (0.14 RBD) induced significant decrease in
CYP3A4 protein quantity. EGA (40.34-fold change for ICz and 24.67-fold change for 1Cso),
K7G (12.35-fold change for IC»0) and LUT (29.65-fold change for 1C20) induced significant
increase in CYP3A4 gene expression. EGA at an ICso is more efficient in decreasing gene

expression of CYP3A4 than EGA at an 1Cyo concentration in HEK293 cells (Figure 6D).

4. DISCUSSION

P-glycoprotein is an ATP-dependent efflux pump encoded by the ABCB1 gene [15]. This
important drug transporter is associated with rapid uptake and elimination of drugs such as
HIV protease inhibitors (PIs) [16]. The enzyme CYP3A4 is responsible for metabolism of
approximately 30-55% of all drugs [17], including PIs [16]. P-glycoprotein and CYP3A4
genes are expressed in various healthy and tumour tissues with excretory functions including
the kidney, liver, small intestine, blood-brain barrier and placenta [18]. Over-expression of
both ABCB1 and CYP3A4 limits the bioavailability, increases the toxicity and reduces the
therapeutic effect of PIs [16, 18, 20]. Therefore, inhibition or down-regulation of their protein
activities and gene expression will enhance the maintenance of optimal plasma drug
concentrations and ultimately improve the drug's therapeutic effects. Plant-derived
phytochemical compounds like flavonoids, phenols, polyphenols and tannins may prove

effective in this regard. In this study, the modulatory effect of four plant-derived
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phytochemical compounds (Epigallocatechin gallate (EGCG), Kaempferol-7-glucoside
(K7G), Luteolin (LUT) and Ellagic acid (EGA)) on the protein activity and mRNA
expression of CYP3A4 and ABCBlwere examined in human kidney (HEK293) and liver
(HepG2) cells. These cells are involved in excretion and drug metabolism and are part of the
bodies’ detoxification system. A previous in silico study has reported that these compounds
possess potential inhibitory activities against CYP3A4 and ABCBI1 [6]. Examining their
invitro modulatory influence on both CYP3A4 and ABCBI may provide vital findings on
their therapeutic usage in boosting drug bioavailability. Their cytotoxic effects and cell

viability profiles were also investigated in the same cell lines.

Cell viability testing is necessary to assess the in vitro toxicity of potential therapeutic
compounds. It evaluates the inherent ability of a compound or chemical substance to inhibit
cell growth, kill cells or interfere with energy metabolism [21] . The dose-response curves
obtained indicate that K7G, EGA and LUT are less toxic to HepG2 cells (Figure 2), and thus
had high extrapolated ICso concentrations. However, the relatively low ICso obtained for
EGCG in HepG2 cells demonstrates sensitivity to the effects of EGCG (Figure 2). On the
other hand, HEK293 cells were sensitive to the effects of K7G, LUT and EGA, but tolerant
of EGCG that yielded a high ICso (Figure 3). Sato et al. (2015) and Selvendiran et al. (2006)
reported in separate studies that human hepatoma (HepG2) and breast cancer (MCF-7) cells
are sensitive to the effect of LUT [22, 23], similar to HEK293 cells but contrasting with
HepG2 cells in this study. This contradiction in HepG2 cells data might be associated with
difference in LUT concentrations used in the two experiments. This study suggests the safety
of EGCG to healthy kidney cells and an anti-proliferating effect exerted in HepG2 cells, and
is in agreement with other studies that reported the anti-proliferating effects of EGCG to

carcinoma cells [2, 24, 25]. Importantly, all IC2¢ concentrations were low in both cell lines
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(Table 1), an indication that these concentrations could be used to exploit the potential

therapeutic effects of the compounds.

Cell viability assays are a measure of cellular metabolic activity that is proportional to
cellular maintenance and survival. These activities are typically a measure of mitochondrial
function; decreased mitochondrial function is implied by the decreased capacity of succinate
dehydrogenase in HepG2 and HEK293 cells to reduce the tetrazolium salt to formazan [26].
Early effects of mitochondrial toxicity include decreased energy production and increased
lactate production, due to the shift in pyruvate metabolism where it is reduced to lactate by
LDH [27]. Therefore, measurement of metabolic biomarkers such as ATP concentration and
LDH are routinely used methods to evaluate cell viability [28-30]. In this study, both ATP
cell content and LDH activities were determined to evaluate the cell viability in HepG2 and

HEK?293 cells treated separately with compounds at different concentrations.

The role of ATP in energy exchanges cannot be over-emphasised, as it plays a crucial role in
biological systems. Healthy cells contain closely regulated levels of ATP, while non-viable
cells are not only unable to synthesize ATP, they also contain endogenous ATPases that
rapidly exhaust the existing ATP [31]. Since all living cells need ATP to survive and carry
out their specialised functions, a decrease in ATP concentrations is an indicator that such
cells are undergoing cell death [32]. In the HepG2 cells, sufficient ATP is available to carry
out vital cellular processes following ICso treatments (Figure 4A) [31, 32]. Interestingly,
intracellular ATP was significantly increased in ICy treated HepG2 cells (Figure 4A),
indicating that the compounds increase cell metabolism. The significant decrease of ATP
levels in HEK293 cells (Figure 4B) treated with 1Cso concentrations of EGCG may be related

to energy failure resulting from mitochondrial dysfunction [31]. However, no significant
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difference was recorded for the compound at its ICo, indicating ATP concentrations within

homeostatic levels.

LDH is found in all living cells (including liver and kidney cells) and is an important enzyme
required for metabolising glucose to energy for living cells. Damage to the cell membrane
results in an increase in extracellular LDH, thus LDH is also an indicator of cell membrane
integrity [28, 29, 33]. At ICso concentrations, in both HepG2 and HEK293 cells, LUT
significantly (p < 0.05) increased extracellular LDH levels (Figures 4C and 4D) when
compared to the control, a strong indication that LUT results in increased lactate production,
indicating a shift to aerobic glycolysis and possibly mitochondrial dysfunction. LDH was
kept within control levels for ICso and IC20 concentrations of all other treatments (Figures 4C)
and suggests that EGCG, K7G and EGA did not induce membrane damage in HepG2 cells
and that pyruvate was shunted to oxidative metabolism and ATP production (Figure 4A). In
the HEK293 cells, this study showed significant reduction in the activities of extracellular
LDH after treatment with IC»0 concentrations corresponding to unchanged or increased ATP

was observed when compared to the control, indicating that cell viability was retained.

The ABCBI transporter requires ATP to mediate the translocation of diverse substrates [34].
This study demonstrated the downregulatory effects of the compounds on the ABCB1 protein
level in the HepG2 cells and was accompanied by increased mRNA expression at the ICa
concentrations (Figures SA and 5B). The ABCBI protein downregulation is associated with
sufficient ATP (Figure 4) to maintain the function of the protein, and thus may increase drug
bioavailability, decrease the toxicity of the exposures and indicate a beneficial effect in terms
of drug metabolism [35]. This depletion that is concurrent with ABCB1 gene upregulation

may occur because of the inducible characteristic of the transporter [35].
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The increased protein quantity of ABCBI1 to varying degrees in HEK293 cells treated with
the respective compounds (Figure 5C) was associated with decreased ATP concentration
(although only significant for EGCG ICs) (Figure 4B), with the exception of K7G where the
expression was associated with increased ATP concentration (Figure 4B). The increase in
protein concentration of ABCB1 in kidney cells was not surprising in light of kidney function
to excrete drugs and metabolic products, and Ssince ATP hydrolysis must occur to facilitate
the translocation of substances into the tubular lumen for excretion [31]. In addition, the
increased protein concentration in EGCG-treated cells was concurrent with increased mRNA
expression for the compound; this suggests a role for the inducible efflux pump in removal of
EGCG [35]. EGCG is a polyphenol that has been reported by several studies to modulate
ABCBI1 [36-38]. In this study, EGCG produced a concentration-dependent increase in the
protein quantity of ABCB1 when compared with the control (Figure 5C), and concentration-
dependent decrease in the level of ABCB1 mRNA amplicons in the RT-PCR (Figure 5D).
Chieli et al. (2010) reported EGCG to decrease both the quantity and the expression of
ABCBI in HEK-2 cells [39], which would be beneficial to maintaining PI concentration. In
contrast, in this study, EGCG upregulated the protein amount and ABCB1 mRNA expression
in HEK293 cells. It may be that embryonic cells are adept at increasing the capacity to
translocate xenobiotic molecules. The increased protein activity of ABCB1 in HEK293 cells
treated with LUT and EGA are also attributed with the insignificant decrease in ATP

concentration recorded for the two compounds.

CYP3A4 activation is associated with oxidation of xenobiotics into water-soluble
intermediates that can be excreted [40]. This energy-requiring process is associated with
activation of the electron transport chain (ETC) in healthy mitochondria and inhibition of
AMP-dependent protein kinase o (AMPKa) [41]. Inhibition or decreased levels of CYP3A4

has been reported to activate AMPKa, thereby resulting in increased cellular ATP levels [41].
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In other words, the activation or increase in the CYP3A4 protein expression deactivates

AMPKa and eventually leads to decrease in intracellular ATP level.

The four compounds significantly increased CYP3A4 protein level at their respective ICso
concentrations in the liver cell (Figure 6A) which may be attributed to the inducibility of
CYP3A4 [42] and correlated to the insignificant decrease in the level of intracellular ATP
produced in the cells. The ICzo concentrations of the test compounds EGCG, K7G and LUT
meaningfully and effectively decreased CYP3A4 protein activity in HepG2 cells (Figure 6A).
This decreased CYP3A4 protein expression correlated with increased ATP levels in the liver
cell (Figure 4A) and suggests that AMPKa activation cause by the reduced level of CYP3A4
resulted in a favourable increase in cellular ATP. Studies have shown EGCG to be an
inhibitor of CYP3A4 activity [43, 44]. Since the other compounds also inhibit the function,
perhaps this downregulation would be beneficial in combination with PI treatment. Only
EGA and LUT demonstrated upregulation of the CYP3A4 mRNA expression, which could

present a problem if it translates into increase in protein expression [9].

In this study, K7G, LUT and ICso of EGCG decreased the protein quantity of CYP3A4 when
compared to the control in HEK293 cells (Figure 6C). With the exception of the ICso
concentrations of K7G and EGA, and ICy of EGCG, all other treatments upregulated the
inducible CYP3A4 gene. For CYP3A4 in the HEK293 cells and ABCB1 in the HepG2 ells,
there was no correlation observed between the mRNA expressions and the protein activities
results. Although the central dogma in molecular biology is DNA-> RNA-> proteins, [44],
some studies observed inverse correlations between the mRNA expression and protein
activities [45, 46]. Greenbaum ef al. (2003) presumed some reasons for this inverse

correlation [47]. Firstly, there is substantial difference in the in vivo half-lives of proteins; and
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secondly, there are complicated and varied post-transcriptional mechanisms involved in the

translation of mRNA into protein that have not yet been well defined [47, 48].

In summary, the compounds were not toxic to HepG2 cells at the ICso and IC2 (ATP levels
increased at 1Czo, no significant change at ICso, and no significant change in LDH with the
exception of LUT, and ABCBI protein activities decreased). However, while the compounds
decreased CYP3A4 at ICz, LUT increased CYP3A4 protein expression. All the compounds
increased CYP3A4 at ICso in HepG2. Gene expression was decreased for EGCG and K7G at
IC20. For HEK293 cells, ATP concentration was similar to the control except for EGCG
which decreased at 1C», and K7G which increased at ICso. Also, LDH decreased at 1C2o with
minimal cytotoxicity, but significant (P < 0.05) increase was recorded in LUT ICso. ABCB1
activities increased at both IC»o and ICso concentrations, but LUT and EGA at ICso decreased
gene expression. The decreased protein level of CYP3A4 in K7G ICso and LUT ICyo
correlates with increased intracellular ATP. This may therefore offer increased bioavailability

of drugs in the long term.

5. CONCLUSION

The findings from the study generally showed that the compounds at both concentrations
exhibited significant down regulatory influence on ABCBI in liver cells compared to the
HEK?293 cells. This may be attributed to the vital role of liver in drug metabolism and the
abundance of the two proteins in the liver. The decreased protein expression of ABCBI1 at
both concentrations and CYP3A4 at the ICy concentrations in treated liver cells corresponds
with increase ATP in all treatments. This is significant because ATP is required for the
activity of these drug-metabolising molecules and would translate to increased drug
bioavailability and be beneficial in terms of drug metabolism. However, the significant

increase in LDH for LUT indicates a cytotoxic effect. For HEK293 cells, at both 1C2o and
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ICso concentrations, an increase in ABCB1 level is not surprising in light of kidney function,
but gene expression decreased. The decrease in intracellular ATP level corresponds with
increase in protein expression of ABCB1 in the kidney, this could be attributed to the usage
of ATP for ABCBI1 function. Furthermore, the decrease in protein activity of CYP3A4 in
LUT, K7G and ICso of EGCG, which corresponds to an increase in intracellular ATP level in
kidney cells, means drugs are not bio-transformed. This may therefore offer increased
bioavailability of drugs in the long term. The decrease extracellular LDH for the compounds

in the kidney (except for LUT at ICso concentration) indicate they are not cytotoxic to the

kidney cells.
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4 CHAPTER SIX
This is the synthesis chapter of this thesis, the different findings from the study were
highlighted, piece together and place the study in the broader context. And the summary of

the research objectives and the main findings presented.
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SYNTHESIS

Substantial evidence from the literature have established there is high prevalence of HIV in
Africa, with Sub-Saharan Africa having the highest prevalence worldwide [1]. It has further
been shown that a high percentage of African populations depend on THMs for primary
healthcare, and there is an increase in the usage of THMs concomitantly with conventional
ARVs among people living with HIV [2, 3]. The herb-drug interactions could adversely
affect the concentration of the ARVs, while there is also the potential for beneficial effects of
the THMs. These potential interactions prompted the investigation of the pharmacokinetic
and modulatory influences of selected PCs from THMs on a drug-metabolising enzyme
(CYP3A4) and transporter (P-gp/ABCBI) involved in the metabolism of commonly used
HIV PIs. Likewise, the cytotoxicity and cell viability of these compounds in two human cell
line models were evaluated. In addition, the inhibitory activities of these PCs against a South
African subtype C HIV-1 protease enzyme were investigated by employing computational

tools.

CYP3A4 and P-gp are crucial drug metabolising proteins involved in the metabolism of the
HIV-1 PIs (DRV, LPV, ATV and SQV) [4-7]. Interestingly, many PIs such as ATV, LPV,
AMP and RTV have also been reported to be inhibitors of P-gp and CYP3A4 [4, 8-10]. P-
glycoprotein is an ATP-dependent efflux pump encoded by the ABCB1 mRNA [11]. This
important drug transporter is associated with rapid uptake and elimination of drugs such as
HIV protease inhibitors (PIs) [10]. CYP3A4 is responsible for metabolising of approximately
30-55% of all drugs [12], including PIs [10]. Inhibition or down-regulation of their protein
activities and mRNA expression will enhance the maintenance of optimal plasma drug
concentrations and ultimately improve the drug's therapeutic effects. From this study, it was

shown that many of the selected PCs (NGN, GER, FST, LUT, PTA, APG, GA and IST) were
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also metabolised by either CYP3A4 or P-gp, and were also predicted to be substrates,

inducers or inhibitors of CYP3A4 and P-gp.

A Molecular dynamics study to investigate the potential inhibitory activities of the fifteen
selected PCs against South African sub-type C HIV-1 protease enzyme (HIVpro) showed that
four PCs (EGCG, K7G, LUT and EGA) possess similar binding energies to the FDA-
approved PIs, with EGCG having better energy than three conventional PIs (DRV, LPV and
SQV) as well as the other PCs. Both the results from the free binding energies and structural
stability analyses (RMSD, RoG, RMSF and receptor-interaction plots) of these four PCs
against HIVpro enzyme after 100 ns of simulations revealed they are capable of binding to
South African sub-type C HIV-1 protease enzyme, and enhance the enzyme’s stability. Its

effect on protease inhibition warrants further investigation.

Further, the molecular dynamic mechanism(s) of inhibition of the four PCs (EGCG, K7G,
LUT and EGA) targeting the catalytic site of CYP3A4 and nucleotide-binding domains of P-
gp were investigated, The findings from the ligand-receptor interaction analysis showed that
EGCG and K7G possessed better inhibitory activities against CYP3A4 and P-gp than EGA
and LUT. While they were not better than ritonavir, they were only slightly lower and could
potentially have a similar effect on inhibition. This finding is significant because the
inhibition of the activities of efflux transporter and drug metabolising enzyme of ARVs are

an important strategy in increasing the concentrations of ARVs in sanctuary sites.

The reported significant findings of the in silico studies necessitated the evaluation of the
effects of the four promising antiviral plant-derived compounds (EGCG, K7G, LUT and
EGA) on cytotoxicity (MTT and LDH assays), cell viability profiles (ATP) and regulatory
influences on the mRNA expression and protein activities of CYP3A4 and ABCB1 (qPCR

and western blotting) in two human cell lines (liver (HepG2) and kidney (HEK293)). The
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effects of these potential anti-HIV PCs on organs (such as liver and kidney) and vital drug-
metabolising proteins like CYP3A4 and ABCBI are largely unknown. This study is the first
to report the effects of K7G on these drug-metabolising proteins, while few studies have
reported on LUT. The MTT assay was used to calculate optimum treatment concentrations at
80% (IC20) and 50% (ICso) cell viability for each compound after cells were treated with the
compounds at different concentrations for 24 hours. From the MTT assay, the dose-response
curves obtained indicate that K7G, EGA and LUT are less toxic to HepG2 cells at the highest
concentration (400uM) tested and thus had high extrapolated ICso concentrations. However,
the relatively low ICso obtained for EGCG in HepG2 cells demonstrates sensitivity to the
effects of EGCG. On the other hand, HEK293 cells were sensitive to the effects of K7G,
LUT and EGA, but tolerant of EGCG that yielded a high ICso. However, the ICzo
concentrations for each of the PCs were low in both cell lines, an indication that these
concentrations (IC) could be used to exploit the potential therapeutic effects of the
compounds. Cell viability (ATP) assay showed the four PCs at their respective 1Cso and ICz
are not toxic to Hep-G2 cells. Interestingly, in the liver cells except for LUT (ICso), the LDH
levels were not significantly altered when compared to the control, indicating no cell
membrane damage. In HEK-293 cells, cell viability assay (ATP) also revealed that the PCs at
both ICy0 and ICso (except EGCG at ICso) concentrations are not cytotoxic to HEK-293. The
LDH result further showed that the PCs are not toxic and safe at both ICso and ICxo
concentrations in HEK-293 and Hep-G2 cells, with the exception of LUT at 1Cso, which
significantly increase LDH level in both cells. This suggests increased lactate production,
indicating a shift to anaerobic metabolism and possibly implies mitochondrial dysfunction in
cells treated with LUT at ICso. However, findings from this study showed that the four

compounds are less cytotoxic at ICao concentrations and may thus prove safe to use.
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The study generally showed that the compounds at both concentrations exhibited significant
down-regulatory influence on ABCBI in liver cells compared to the HEK293 cells, and the
decrease in protein level of CYP3A4 in LUT, K7G and ICso of EGCG in the kidney cells,
means drugs are not bio-transformed. This would translate to increased drug bioavailability
and be beneficial in terms of drug metabolism. Our results showed that the PCs at their
respective 1Cyo significantly down-regulate protein activity of ABCBI in the liver cells. And
also, EGCG, K7G, LUT at their ICy0 concentrations down-regulate CYP3A4 protein level in
the liver (the main organs involved in the metabolism of drugs) and increases ATP levels.
These are significant findings, as the compounds at their IC are not toxic to the liver cell
and increase ATP level which is required for the activity of these drug-metabolising
molecules. This might also translate to increased drug bioavailability (such as increasing the
concentrations of ARVs in the sanctuary sites and in the plasma) and be beneficial in terms of
drug metabolism. At ICso concentrations, the four PCs significantly increased CYP3A4
protein activity in the liver cell which could be attributed to the inducibility of CYP3A4 [13]
and correlated to the insignificant change in the level of intracellular ATP produced in the
cells. Inverse correlation between the mRNA expressions and the protein activities was
observed for CYP3A4 in the HEK293 cells and ABCBI in the HepG2 cells. Even though the
general theory of molecular biology says mRNA contains information needed for the
production of proteins through biological process of translation, however, inverse correlations
between the two have been reported in studies [14, 15]. Certain factors such as post-
transcription mechanisms involved in the translation of mRNA into protein could contribute
to the inverse correlation [16]. The duration of the mRNA in the cytosol, initialisation of
translation (which is regulated by eukaryotic initiation factor-2 (elf-2)), the readiness of the
ribosome to attach the mRNA and the regulation by microRNAs are other factors that could

contribute to the inverse correlation between mRNA expression and protein level [17-20]. In
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this instance, the results of the protein activity are considered to be significant, being the final

product of protein translation process.

Unlike in HepG2 cells, the PCs at both IC20 and ICso concentrations increase ABCB1 quantity
in HEK293 cells. These observations in the kidney cells are not surprising considering the
function of the kidney cells as an excretory organ. LUT and EGA (at both concentrations),
EGCG and K7G at IC20 showed insignificant change (sufficient ATP is available to carry out
vital cellular processes) in intracellular ATP level in the HEK293 cells treated with the PCs.
This insignificant change in ATP level correlated with increase in protein expression of
ABCBI in the kidney, which might be attributed to the usage of ATP for ABCBI function.
The study further showed that K7G and LUT at lower concentrations, and LUT, K7G and
EGCG at ICso could decrease protein level of CYP3A4 in HEK293 cells and would enhance

increase bioavailability.
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CHAPTER SEVEN

~

This is the concluding chapter of this thesis, the study conclusion was presented and the

recommendations for further research also presented.

J
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CONCLUSION AND RECOMMENDATIONS

7.0 Conclusion

The concomitant use of THMs with orthodox medicine is gaining more acceptance and
recognition in the treatment of numerous diseases which include HIV in several countries of
the world. This study has described the pharmacokinetic and modulatory influences of some
selected bioactive PCs present in THMs used by HIV-positive patients in South Africa on the
drug-metabolising proteins involved in the metabolism of HIV-1 protease inhibitor drugs
(PIs). The study corroborated existing studies that CYP3A4 and P-gp are actively involved in
the metabolisms of commonly prescribed Pls, and further established that some of these PCs
present in THMs are metabolised by either CYP3A4, or P-gp, or both. In addition, molecular
dynamic study also showed that four of the selected PCs showed good binding affinity

towards South African Sub-type C HIV-1 protease enzyme.

In another in silico study that examine the inhibitory activity of the four antiviral PCs, the
results showed that three (EGCG, EGA and K7G) out of the four PCs showed more similarity
with RTV in their interaction with CYP3A4, and two (K7G and EGCG) showed similar
interactions with RTV in P-gp systems. The study, thereby, suggests that EGCG and K7G
might be a suitable substitute for RTV in its use as a booster for HIV protease drugs where it
is known to increase the optimal concentration of HIV PIs in the systemic circulation. RTV
inhibits the pumping out and the rate of metabolism of HIV PIs from the circulating system

thereby, enhancing the therapeutic effect of the PI drugs.

An in vitro study was performed to follow up the encouraging results of the in silico studies
to evaluate the modulatory influences of four PCs (EGCG, K7G, LUT and EGA) present in
some of the herbal medicines used by HIV positive patients in South Africa on the protein

activities and mRNA expressions of CYP3A4 and ABCBI in conjunction with their
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cytotoxicity and cell viability profiles in two human cell lines (HEK293 and HepG2).
Findings from the study showed that the four PCs are less cytotoxic at their respective 1Czo
concentrations, decrease the biotransformation of drugs, could increase drug plasma
concentrations in the systemic circulation and may thus prove safe to use. At ICso
concentrations, K7G, LUT and EGA are sensitive to HEK-293, while EGCG is sensitive to
Hep-G2 cells. The findings further revealed that elimination of drugs could be decreased, and

bioavailability could be increased by ICso concentrations of LUT, K7G and EGCG.

This study is the first to report the effects of K7G on these drug-metabolising proteins. Our
results showed that K7G at IC»o concentrations significantly down-regulate protein activity of
ABCBI and CYP3A4 in the liver cells and increases ATP levels. The study further showed
that K7G at ICy and ICso concentrations could decrease protein activity of CYP3A4 in
HEK?293 cells. These are significant findings, as the K7G at ICyo is not toxic to the liver cell
and enhance ATP level which is required for the activity of these drug-metabolising proteins,

and would enhance increase bioavailability.

The study showed that some of the selected bioactive PCs possess potential dual inhibitory
activities against both the two drug-metabolising proteins and South African subtype C HIV-
1 protease enzyme, thereby making them promising lead agents in HIV treatments. These
natural compounds can serve as inhibitors of the drug metabolizing proteins and eventually

boost the bioavailability of HIV-1 Pls in the plasma and sanctuary sites.

7.1 Recommendations

This work has described the pharmacokinetic and modulatory influences of the PCs from
THMs on drug-metabolising enzyme and transporter of HIV-1 Pls in both in-silico and in
vitro studies. Therefore, further in vitro studies are needed to investigate and determine the

antiviral and inhibitory activities of these PCs against HIV-1 protease enzyme and drug-
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metabolism proteins. This work also recommends similar in silico, in vitro and clinical
studies that involve other ARVs such as integrase inhibitors and Non-nucleoside reverse
transcriptase inhibitors (NNRTIs) drugs to be carried out. Since these compounds showed
good inhibitory activities against P-gp and CYP3A4, this work recommends that a similar
study using these compounds should be done on multidrug resistance in cancer patients since
over-expression of P-gp and over induction of CYP3A4 have been reported in cancer patients
failing therapy. An additional investigation into the effects of these compounds on cell cycle

arrest and their mechanism(s) of exerting cytotoxicity is recommended.
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Appendix A
Chapter 3 supporting information

A.2 Select docked complex structures of ligand-HIVpro used for molecular dynamic
simulations

Figure 3: The selected docked structure for LPV-HIVpro
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Figure 6. The selected docked structure for BIT-HIVpro
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Figure 9. The selected docked structure for EGCG-HIVpro
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Figure 12. The selected docked structure for GER-HIVpro
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Figure 15. The selected docked structure for NGN-HIVpro
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Figure 18. The selected docked structure for IST-HIVpro
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Figure 19. The selected docked structure for LNT-HIVpro
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Appendix B
Chapter 4 supporting information
B.1 Select docked complex structures Ligand-CYP3A4 used for molecular

dynamic simulations

Figure 22. The selected docked structure for EGCG-CYP3A4
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Figure 25. The selected docked structure for LUT-CYP3A4
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B.2 Select docked complex structures Ligand-P-gp used for molecular dynamic

simulation

Figure 27. The selected docked structure for LPV-P-gp
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Figure 29. The selected docked structure for EGCG-P-gp
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Figure 31. The selected docked structure for LUT-P-gp
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Appendix C

Chapter 3 and 4 Input files for MD simulations

C.1 Input files for MD simulations in explicit solvation
The following in put files were used in this thesis.
Partial minimization input file
Initial minimization of MMP3 (MMMM): solvent molecules and added ions
&ecntrl
imin =1,

maxcyc = 2500,

ncyc =750,

ntb =1,

ntr =1,

cut =12.0,
NTWR=500,

ntxo=1

ioutfm=0

/

Hold the Protein fixed
10.0

RES 1 198 (HIVpro), 1242 (P-gp) and 278 (CYP3A4)
END

END
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Full minimization input file

full minimization of MMP3 (MMMM): protein, ligand, solvent molecules and added ions
&ecntrl

imin =1,

maxcyc = 200,

ncyc =50,

ntb =1,

cut =12.0,
Drms =0.0001,
ntxo=1
NTWR=500,
ntxo=1
ioutfm=0

/

END
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Heating stage input file

Heating Step of MMP3 (MMMM): stage-5
&entrl

imin= 0,

irest=0,

NTX=1,

ntb= 1,

NTPR=500,

NTWX=500,

NTWR=500,

ntr=1,

Tempi=0.0,

Temp0=300.0,

NTT=3,

gamma_In=1.0,

NTC=2,

NTF=2,

cut=12.0,

nstlim=2500,

dt=0.002,

ntxo=1

ioutfm=0

/

Keep Protein and inhibitor fixed with weak restraints
10.0

RES 1 198 (HIVpro), 1242 (P-gp) and 278 (CYP3A4)

END

END
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Equilibration Step Input file

Equilibration Step of MMP3 (MMMM): stage-1

&ecntrl
imin= 0,
irest=1,
NTX=7,
ntb=2,
ntp=1,
PRES0=1.0,
TAUP=2.0,
NTPR=500,
NTWX=500,
NTWR=500,
ntr=0,
Tempi=300.0,
Temp0=300.0,
NTT=3,

gamma_In=1.0,
NTC=2,
NTF=2,
cut=12.0,

nstlim=250000,
dt=0.002
ntxo=1,
1outfm=0,

/
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MD Input file

Equilibration Step of MMP3 (MMMM): stage-1
&ecntrl

imin= 0,

iwrap=1,

irest=1,

NTX=5,

ntb=2,

ntp=1,

PRES0=1.0,

TAUP=2.0,
NTPR=500,
NTWX=500,
NTWR=500,

ntr=0,
Tempi=300.0,
Temp0=300.0,
NTT=3,

gamma In=1.0,
NTC=2,

NTF=2,

cut=12.0,
nstlim=10000000,

dt=0.002,
ntxo=1,
1outfm=0,

/
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Combining trajectories input file
trajinmd.mdcrd
trajin md2.mdcrd
trajin md3.mdcrd
trajin md4.mdcrd
trajin md5.mdcrd
autoimage
strip :WAT,Na+,CI- outprefix stripped
trajoutcombined.mdcrd

C.2 Data analysis parameters
Calculating RMSD for the backbone
trajincombine.mdcrd
rms first out rmsd.dat @CA
Calculating the RMSF of the backbone
trajincombine.mderd
atomicfluct out rmsf.dat :1-198 (HIVpro), 1242 (P-gp) and 278 (CYP3A4) byres
Calculating the RoGof the backbone
Trajincombine.mdcrd
radgyr out RoG.dat mass nomax
Calculating the Solvent accessible surface area

trajincombine.mdcrd

surf :1198 (HIVpro), 1242 (P-gp) and 278 (CYP3A4)out sasa.dat

Snapshots
trajincombine.mdcrd

outtraj snapshot.pdb onlyframes 100000
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Appendix D
Chapter 5 supporting information

Table 1: Raw data for the determination of ICso and IC2o using the cell viability (MTT)

assay in HepG2 cell
EGCG EGA LUT
Conc. Log % cell Log % cell Log % cell
AVG Conc viability AVG Conc viability | AVG Conc viability
(M)
0 0.606 100 0.265 0 100 0.438 0 100
12.5 0488 1.1 80.53 0.259 1,1 98 0433 1,1 99
25 0490 14 80.86 0254 14 96 0429 14 98
50 0449 1.7 74.08 0262 1,7 99 0420 1,7 96
100
0.400 2.0 66.01 0.253 2 96 0.403 2 92
200
0.241 23 39.77 0222 23 84 0.399 2,3 89
300
0.184 2.5 30.36 0.207 2,5 78 0.359 2,5 82
400
0.157 2.6 25091 0.198 2,6 75 0.346 2,6 79
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Table 2: Raw data for the determination of ICso and IC2o using the cell viability (MTT)

assay in HEK293 cell

EGCG EGA LUT
Conc. Log % cell Log % cell Log % cell
AVG Conc. viability AVG Conc viability AVG Conc. viability
(M)
0 1.048 100,00 0.147 100 0.327 100
12.5 1.047 1.1  99.95 0.125 1,1 85 0.294 1,1 90
25 1.034 1.4 98.66 0.110 14 75 0.294 1,4 88
>0 1358 1.7 100.30 0.118 1,7 80 0274 17 84
100
1.245 2.0 100.19 0.101 2 69 0223 2 68
200
1.216 2.3 100.16 0.068 23 46 0.196 23 60
300
0.897 2.5 85.59 0.067 2,5 46 0.196 2,5 60
400
0.527 2.6 50.29 0.059 2,6 40 0.177 2,6 54

Table 3: Raw data for the determination of ICso and IC2o using the cell viability (MTT)

assay for K7G in HepG2 and HEK?293 cells

HepG2 HEK293
Conc. Log % cell Log % cell
AVG Conc. viability | AVG Conc viability
(M)
0 0.272 100 0.148 100
12.5 027 11 99.26 0.137 11 92.57
25 0.261 1.39 95.95 0.11 139 25
50 0.251 1.7 92.28 0.078 1.7 74.32
100 0.247 2 90.81 0.037 2 52.7
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Table 4: Absorbance and concentrations of standards.

BSA
Absl Abs2 Ave Abs (mg/ml) Abs
0.174 0.172 0.173 0
0.427 0.303 0.365 0.2 0.192
0.467 0.456 0.461 0.4 0.289
0.632 0.678 0.655 0.6 0.482
0.829 0.843 0.836 0.8 0.655
0.974 1.017 0.995 1 0.823
P oas O C
0.4
0,35
0,3
0,25
0,2
0O  oas C
0,1
y=0,3163x + 0,0803
0,05 R*=0,9143
o}
o0 0,2 04 0,6 0.3 1 1,2
BSA protein concentration (mg/ml)

@ ' g

Figure 51: BSA protein concentration Vs average absorbance.

Figure was constructed as a standard curve. The equation defining the curve (y = 03163x +

0.0803) was used to determine the protein concentration of each sample.
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ARTICLEINFO ABSTRACT

Keywords:
Pharmaceutical chemistry
Pharmeceurical selence

Acquired Immune Deficiency Syndrome is the most severe phase of Human Immunodeficiency Virus (HIV]
infection. Recent studies have seen an effort te isolate phytochemicals from plants to repress HIV, but less studies
have focused on the effects of these phytochemicals on the activities of enzgymes/transporters involved in the

::'::tlﬂl':rﬂ-’:‘ i metabolism of these drugs, which Is one of the alms of this study and, o examine the antivisal activity of these
E";}:E:m o compounds against HIV-1 protease enzyme using computational tools. Centre of Awareness-Food Supplement
Transporters (COA®-FS) herbal medicine. has been said to have potential anti-HIV features. SWISSTARGETPREDICTION and

SWISSADME servers were used for determination of the enzymes/transporters involved in the metabolism of
these protease inhibitor drugs, (Pls) {Aazanavir, Lopinavie, Darunavir, Saquinavir) and the effects of the selected
phytochemicals on the engymes,/transporters involved in the metabolism of these PIs. Using Computational tools,
potential structural inhibitory activities of these phytochemicals were explored. Two sub-families of Cytochrome
P45 enzgymes (CYP3A4 and CYP2C19) and Permeability glycoprotein (P-gp) were predicted to be involved in
metabolism of the Pls. Six phytochemicals (Geranin, Apigenin, Fisetin, Luteolin, Phihalic acid and Gallic acid)
were predicted to be inhibitors of CYP3A4 and, may slowdown eliminaton of Pls thereby maintain optimal Pls
concentrations, Free binding energy analysis for antiviral activities identified four phytochemicals with favour-
able binding landscapes with HIV-1 protease enzyme. Epigallocatechin gallate and Kaempferol-7-glucoside
exhibited pronounced structural evidence as potential HIV-1 protease enzyme inhibitors, This study acts as a
steppingstone toward the use of natural products against diseases that are plagued with adverse drug-interactions.

Anriviral activities

1. Intreduction

The World Health Organization (WHO) reported that approximately
72 millicn people had already been infected with the Human Immuno-
deficiency Virus (HIV) worldwide in 2017 (WHO, 2018). OF these re-
cords, the sub-Saharan Africa was the most heavily affected region,
accounting for over 69% of all infected cases, The Joint United Nations
(UNAIDS report) (2018) states that although there is a steady decline in
Acquired Immune Deficiency Syndrome (AIDS) related illnesses over the
past decade; however, the global rate of new HIV infections is not falling
fast enough to reach the milestones set in place by 2020 (WHO, 2018),

0Of the enzymes involved in the replication cycle of HIV in human
immune cells, the HIV protease enzyme is one of the most significant
enzymes required to produce mature and infectious HIV virions. This has
allowed the enzyme to be the utmost protuberant focus for anti-HIV

* Corresponding author.

inhibitors (Scholar, 200 1). The protease enzyme is a C2-symmetric active
homodimer, consisting of a non-covalently connected dimer of 99 aming
acid residues each to form an active homodimer, The two moenomeric
chains assemble to form an enclosed tunnel covered by two flaps that
characteristically “open and close” upon substrate binding (Levy and
Caflisch, 2003}, The effective activity of HIV protease in the viral cycle is
crucial for the maturation of infectious HIV virions (Brik and Wong,
2003, Therefore, there is no doubt that inhibiticn or inactivation of the
enzyme will result to the production of less viable and noninfections
virions and will eventually lead to a reduction in the spread of the
infection to vulnerable hosts or cells.

Wiral replication by HIV is inhibited by protease inhibitor drugs (Pls)
by binding to the HIV proteases and subsequently obstructing the pro-
teolytic cleavage of the protein precursors which are important for
making of mature HIV virions (Soontormnivombkij et al., 2014). Pls are
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designed to look like the natural substrates of the viral protease. They
prevent the HIV-1 protease from cleaving the precursor proteins by
precisely binding the active site of the virus protease, which eventually
results in the development of immature non-infectious viral particles
(Gerettl and Easterbrook, 2001). In South Afriea, the current Adult an-
tiretroviral therapy guidelines in use recommend four FDA-approved Pls,
ataganavir, darunavir, lopinavir and saquinavir, with ritonavir being
used as boosters with the drugs (Carmona and Nash, 20170,

The use of traditional herbal medicine is gaining more popularity in
the teeatiment of diseases such as HIV in many countres, (WEHO, 2018)
despite the possibility of Heebal-drug interactions and toxicity that could
oocur as a result of co-administration of Herbs and antiretroviral drugs
[ARVs), Monetheless, there have been significant increases in the usage of
herbal medicine not only in developing countries but also in developed
countries, which has caused great public health concern amoeng scientises
and physicians who are sometimes not sure about the safety of herbal
preparations especially when used concurrently with regular arthodox
medications such as ARV (WHO, 2018), In South Africa, many patients
undergoing antiretroviral therapy also consume traditional herbal med-
icine (Klooto and Maidoo, 2014), One of the most consumed herbal
medicine by HIV patients in South Africa is COA®-F§ (Centre of
Awareness) herbal medicine (COAR-FS) (Mlooto and MNaidoo, 2014).

COAR-F& herbal medicineis produced by Centre of Awareness (COA),
an organization, based in Cape Coast, Ghana. According Lo the producer,
the COAR-FS herbal medicine contains six Africa plants namely; Aza-
dirachta indica, Persea americana, Carica papayo. Spondias mombin, Ocl-
migrt viride and Vernonie amygdaling (FDA/DRIDHMD/HMU 16/0981,
2016}, HIV patients purchase it as immune boosters against HIV/AIDS

Table 1

Helftyan 5 [2019) e02565

and as treatments for other diseases (hittps://wiww.coadrugs.org).

Previous studies have showed that HIV positive patients use herhal
medicine concurrently with preseribed protease inhibitor drugs. No or
few studies on the effect of the chemical constituents of the herbal
medicines on the enzgymes and transporters involved in the metabolism of
drugs such as PI drugs have been done, therefore there is pavcity of ev-
idence or information on the effectiveness and the possibility of serious
side effects of phytochemical compounds from herbal medicine on pre-
scribed protease inhibitor drugs. This has motivated this study to
exaimine the pharmacokinetie effect of numerous phvtochemical com-
pounds from COAEFS herbal medicineon the activities of major en-
zymes and transporters involved in the metabolism of FDA-approved
protease inhibitor drugs wsed in South Africa (Atazanavir, Lopinavir,
Darunavir, Saguinavir) commonly use in South Africa and to examine
their antiviral activities as potent inhibitars of HIV-1 protease enzyme
using in silico pharmacodynamics and pharmacokinetic analysis, These
phytochemical compounds will then be compared with FDA approved
drugs against the HIV-1 protease enzyme to identify the least toxic and
mast favourable compounds that may act as lead malecules for experi-
mental analysis,

In a previous study in our lab, COAR-FS herbal medicine and its
component plants were subjected to Gas Chromatography-Mass Spec-
trometry hitps://www.sciencedirect. com/topics/ hiochemistry-genetics
-and-molecular-biology /gas-chromatography-mass-spectrometry - (GC-
MS) to identify the phytochemical compounds present in them (Boadu,
201%; MWwabuile, 2019). A comprehensive literature search on the
antiviral activities of phytochemical compounds from COA® and its
component plants was as well done. Fifteen of the phytochemical

Selected phytochemicals with antiviral activities present COAR-FS herbal medicineand its component plants,

Compounds Mant name Extracts Flant Literature Reference COA-FS herbal medicine
Nams party GC- Extracis Reference
WM&
EGA Spondias mombin, Carice Hydroethanalic, Lesal (Shin et al, 2005) Nwahuifle, } Ethannlic, Hexane, Baadu, 2009,
papapa 2019 Mwabuile,
20149
CHI Azadirachn (rdica, Methanalie, hexane, ethanol, Lezaf [Dineshkumar and Kajakumar, t Ethanad, hexane Boadu, 2009
Vernonio omygdaling, ethylacetate, Dichloromethane 7] Boadu, 2019 Nwabuife, Mwabuife,
Carica papmya 219 20149
INT Asardiraehun indica, Chloroform, Dichloromethane  Leal [Siddiqui et al., 2006} Boadu, i Dichboromethane Boadu, 2019
Yernonio amygdalima 29
BIT Cariea papmya Hydrothanolic Seed, [Eermanshai et al., 2001} + Erhanolic Boadu, 2019
leaf
G [methyl Perseq Amerivana Methanalic Pulp, [Hurtado-Femnandez et al i Standard Boadu, 2019
salicylate) Ll 2014)
8T Yernomia amygdeling Chboraform, Dichloromethane, Leaf [Adewnle e al., 201 8) Boaach, } Dichberemethane Baady, 2019
ethanol, e
sTG Coricn papmya, Persen Petroleum ether, Lesaf [Fashed et al., 2013; Manika i Hexane, Baadu, 2009;
Amricang, Vemoma Hydrocthanolie, hexane, and Geetha, 2015; Boadu, 201% Dichloromethane, Mwabuife
amygdaling, Asadirecfin Dichbsamethane, Mwabuife, 2010) ethylacetaie 2019
inidica cthylacetare, ethanol
FTA Coricn paprya, Azedirochin Methanolic, Cride odl, hesane,  Lial [Sajin et al., 2015; Boadu, 2015 t Hexane, ethylacetate Boadu, 2019;
indica Dichkwromethane, Bahatunde ef al., 20093 BMwabuife,
etliylacetare, ethanol 2014
MGH Persea Americanc, Corica Methanalic, Ethylacetate Leaf (Hurtaclo Fermande: ot al., Mlethanalic,
papaya 20145 Nwabwife, 2019 Ethylacetate
K70z Corica papoya Ethemalic, aquesus Fruit/ (Eongkachuichai and . L11]
mulp, Charoensin, 2000; Lako, 2007
dry leal
EGCG Persea Americana HydroMethanolic sese] (Calderdn-Odiver et al., 2005) . N
LT Vernoein anygdaling, Ethanolic, methanolic Leaf, [Igile e al., 1995) - uin]
Carica papaya Fruit/
pulp
GER Sporufiasmomiin Hydroaleohalic Lizal [(Mukhtar et al., 2008) - NI
AP Carica papmya Ethanalic, aquesus Fruit/ Franke et al., 2004 - NI
it
F&T Corica papaya Ethanalic, aquesus IF‘mIiI;,-' Lakn, 2007 - L1
pulp

Key: + means present, - means not present, ND means not detected.
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compounds from COA%-FS herbal medicine and its component plants
were selected for this study, to examine the transporters and enzymes
involved in the metabolisms of the selected phytochemical compounds
and metabolism of four FDA-approved Pls (Atazanavir, Lopinavir,
Darunavir, Saquinavir), and to evaluate the effects of these phyto-
chemical compounds from COA®-FS herbal medicine and its compo-
nent plants on the activities of enzymes and transporters involved in
drug metabolism of the four Pls. In addition, the antiviral activity of
these phytochemical compounds from COA®-FS herbal medicineand its
constituent plants were examined using molecular docking and dy-
namics simulations.

Table | showed the fifteen selected phytochemical compounds pre-
sent in the COA®-herbal medicineand its components plants. Nine of the
selected phytochemical compounds (EGA, EPG, LNT, BIT, GA, IST, STG,
PTA and NGN) were present in the COA®-FS herbal medicinebut the
remaining 6 compounds were reported in literature to be present in

Heliyan 5 (2019) 02565

different parts of the six plants.

Fig. 1 illustrates the 2-D structures of the selected fifteen phyto-
chemical compounds from COA®-FS herbal medicineand its constituent
plants, 2-D structures of the four FDA-approved protease inhibitor drugs
and the crystalline structure of HIV protease enzyme indicating the active
site amino acid residues of the enzyme. Three letters code were assigned
for the phytochemical compounds and the four FDA-approved drugs.

2. Methods

2.1, Prediction of enzymes and transporters targets

SWISSTARGETPRIDICTION and SWISSADME servers were used for
the prediction of proteins (enzymes and transporters) involved in the
metabolism of the Four FDA approved drugs and the selected phyto-
chemical compounds from COA-Fs herbal medicine and its component
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Fig. 1. 2D Structures of the fifteen selected phytechemical compounds from COA-Fs herbal medicine and its component plants and 2D structures of the Four FDA

approved drugs.
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plants and their pharmacokinetic effects (Gieller et al., 2074). The server
predicts the target of small molecules.

2.2 Measurement of pharmacokinetics properties and drug likeliness of the
phytochemical compoumnds

SWISSADME server was used for the determination of the physico-
chemical descriptors and define the pharmacokinetic properties and
drug-like nature of each phytochemical compound. The “Brain Or In-
testinal Estimated permeation, (BOILED-Egg)” method was utilized as it
computes the lipophilicity and polarity of small moelecules {Daina e al.,
2017

23 HIV-1 enzyrme and lgond acquistion and preparation

The X-ray crystal structures of the HIV-1 Protease enzyme (PDB codes:
JUFL) was obtained from the RSCB Protein Data Bank (Burley el al,,
2008}, The structures of HIV-1 protease was then prepared on the UCSF
Chimera software package (Yang ot al, 2002)where the monomeric
protein was converted to a dimeric structure, The four FDA-approved
drugs Atazanavir, Damnavir, Lopinavir, and Saquinavir, as well as the
fifteen phytochemical compounds, were accessed from PubChem (Kim
et al,, 2016)and the 3-D structures prepared on the Avogadro software
package (Hanwell et al,, 2012},

24, Molecular docking

The Molecular docking software utilized in this study was the Auto-
dock Vina Plugin available on Chimera (Yang et al., 2012, with default
docking parameters. Prior to docking, Gasteiger charges were added to
the compounds and the non-polar hydrogen atoms were merged to car-
bon atoms. The phytochemical compounds were then docked into the
binding pocket of Protease (by defining the grid box with a spacing of 1 A
and size of 24 « 22 « 22 pointing in x, v and # directions). The four
FA-approved drug systems, as well as the four best-docked phyto-
chemical compounds systems, were then subjected to molecular dy-
namics simulations,

2.5, Molecular dynamic {MD) smulations

The CPU version of the SANDER engine provided with the AMBER
package was used for the MD simulations, and the FF145B variant of the
AMBER force feld (Mair and Miners, 2014) was used to describe the
protein.

To generate atomic partial charges for the ligand, ANTECHAMBER
was used by utilizing the Restrained Electrostatie Potential (RESP) and
the General Amber Force Field (GAFF) procedures. The Leap module of
AMBER 14 allowed for the additicn of hydrogen atoms, as well as Na™
and Cleounter ions for neutralization all systems. The amino acids were
renumbered based on the dimeric form of the enzyme, thus numbering
residues 1-198, The 8 systems were then suspended implicitly within an
orthorhombic box of TIP3P water malecules such that all atoms were
within 84 of any box edge,

An initial minimization of 2000 steps were carried out with an
applied restraint potentizl of 500 keal/mol for both solutes, were per-
formed for 1000 steps using the steepest descent method followed by
1000 steps of conjugate gradients. An additional full minimization of
1000 steps were further carried out by conjugate gradient algorithm
withoul restraint.

A gradual heating MD simulation from OK to 300K was executed for
50ps, such that the systems maintained a fixed number of atoms and fxed
volume. The solutes within the systems were Imposed with a potential
harmonic restraint of 10 keal/maol and collision frequency of 1.0ps,
Following heating, an equilibration estimating 500ps of each svstem was
conducted; the operating temperature was kept constant at 300K, Addi-
tional features such as several atoms and pressure were also kept constant
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mimicking an isobaric-isothermal ensemble (MPT). The system's pressure
was maintained at 1 bar using the Berendsen barostat.

The MD simulations was conducted for 100ns. In each simulation, the
SHAKE algorithm was employed to constrict the bonds of hydrogen
atoms. The step size of ecach simulation was 2fs and an SPFP precision
model was used. The simulations coincided with the isobarie-izothermal
ensemble (NPT, with randomized seeding, the constant pressure of 1 bar
maintained by the Berendsen barostal, a pressure-coupling constant of
2ps, a temperature of 300K and Langevin thermostat with collision fre-
quency of 1.0ps.

2.6, Post-dynomic ancalysis

The coordinates of the 8 systems were then saved and the trajeclories
were analyzed every 1ps using PTRAJ, followed by analysis of RMSD,
EMSF and Radius of Gyration using the CPFTRAJ module emploved in
AMBER 14 suir.

2.7, Binding free energy calculations

To estimate and compare the binding affinity of the systems, the [ree
binding energy was calculated using the Molecular Mechanics/GB Sur-
face Area method (MM/GBSA) (Ylilauri and Pentikainen, 201 3), Binding
free energy was averaged over 100000 snapshots extracted from the
100z eeajectory. The free binding energy (AG) computed by this methaod
for each melecular species {complex, ligand, and receptor] can be rep-
resented as (Haves and Archontis, 20110

AGing = Geompier = Grecepuor = Giigond (1}
AGuin = By + Gy — TS (2}
Ey =Fu + B + Eup (3)
Gy = Ggp + Gay, (4)
Ciga = y5A5A [5)

The term Egg, denotes the gas-phase energy, which consists of the
internal energy Ein; Coulomb energy Fup. and the van der Waals energies
v The Eggs was directly estimated from the FF145B force field terms,
Solvation free energy, Gy, was estimated from the energy contribution
from the polar states, Ggp, &nd non-polar states, G. The non-polar sol-
vation energy, 5A. Gga, was determined from the solvent accessible
surface area (SASA), using a water probe radius of 1.4 A, whereas the
polar solvation, Ggg, contribution was estimated by solving the GB
equation. 5 and T denote the total entropy of the solute and temperature
respectively.

28 Data analysis

All raw data plots were generated using the Origin data analysis
software (Seifert, 2014).

3. Results
3.1, Assessing the predicted targets for the drugs ond phytochemicals

Using two different methods, the SWISSPREDICTION and SWIS-
SADME servers the enzymes and transporters invelved in the meta-
bolism of the four FDA-approved drugs and the fifteen selected
phytochemical compounds were predicted. The SWISSPREDICTION
server predicted all possible enzymes and transporters that are likely to
be targets of the phytochemical compounds, On the other hand, the
SWISSADME predicted the possibility of the phvtochemicals com-
pounds having pharmacckinetic effect on some cytochrome P450
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Table 2
Predicted targets invalved in the metabolism of the four FRA-approved P1drugs and selected phytochemical compounds from COA®-Fs herbal medicine,
Compaund SWISSPREDICTION SWISSADME
Name Enzymes ‘Transparters Enzymes Transporiers
ATY Benin, Cathepsin D, Pepsin A-5, Cathepsin E, Napsin-A, CYPEAA, NP CYPIn4 P
Gastricsin glveopratein
ROV Thromboxane-A synthase, Renin, CYP3A4 D (2}, 0 {4) dopamine recepors, Substanee-E receplor, CYP3a4 P-
Substance-P receptor, Mearomedin-E recepior, Oxytocin glveopratein
receptor, Mu-typse opiold receptor
ey Renin, Cathepsin D, Napsin-A, Beta-seeretase 1, Belasecretase 2, Potassium wltage-gated (ion chanmal), CYPIA4, P
Gastricsin CYPIC1% flyeopratein
DEY CYPPGA4, Thrombokane-A synthase, CYPP3AS, CYP3AT, C-C chemokine receptor type 1-8, CX3C chemokine CYPIA4 p-
CYF3A43, Rendn, Cathepsin [ receptor 1, glyeopratein
EGOG PEX, 67 kD matrix metalloproteinase-9, 14, 15, Beta-seeretose 1, Potassium voltage-gated channel subfamily H member 2 NP NP
2, Tyrasyl-DNA phosphodiesterass 1, G-phosphogluconate
dehydrogenase, decarboxylating, Telomerase reverse transcriptase,
Dihydrofolate reductase, Dihydrofolate reductase
E7G Tyrosyl-DMA phosphodiesterase 1, Xanthine dehydrogenase/ Adenosine receptor AL, Alpha-2a, 2C, 2B, Muscle Mind- NP NP
oxidaze, ﬁ.'llluh_l,-du oxidaze, Alda-keto reductase rmllll_'f 1, Aldass like protein 1
reductase, Lysine-specific demethylase 44, Lysine-specific
demethiylase 44, 48, 4C
EGA Cytidine deaminase, Thymidine kinase, Adenosine deaminase, NP CYP1AZ NP
Thymidine phosphorylase, Histone deacetylase 1-3, Adenosyl
hemacysteinase, Putative adenosy] hamocysteinage 2, Carbanic
anhydrase 1, 2, 3, 12
wT 22 kD interstitial eollagenase, CYP1AZ, PEX, Stromelysin-1, 67 NP CYP1AZ, NP
kil matrix metalloproteinase-9, Aldose reductase LY PG,
CYP3a4
GER Squalens mansaxygenase, Tyrasyl-DMA phosphodiesterass 1, Multidrug resistance protein 1 (P-glveoprateiny CYP1A4, NP
Muzche blind-like prodein 1, Muscle blind-like protein 2 and 3, DNA CYPRCY
topoisomerase 1, Tyrosine-protein phosphatase nae-receplor type 2
CHI Androgen recepior, CYPPI9A1, Estrogen receptor, Estrogen Sodium-dependent noradrenaline transponter CYP2CH NP
receptor beta, Ouysterols receptor LXR-beta, Oxysterals receptor
LXR-alpha, Tyrosyl-DNA phosphaodiesterase 1, Tyrasine-pratein
phasphatase non-receptor type 1 and 2, M-phase Inducer
phosphatase 1, Lanosterol 14-alpha demethylaoe, 3-000-5-alpha-
sterold 4-dehydrogenase 2
APG Aldo-keto reductase family 1, CYPIAZ, Cyclin-dependent kinase 1, Estrogen receptor, Adencsine roosptor AZa CYP1AZ, Wiy
Microtubule-associated prodein tan, CYP194A1, Cyclin-dependeni CYPXH,
kinase 4, Estradiol 17-beta-debydrogenase 1, Aldose reductase, CYPin4
Casein kinase [T subunit alpha
F&T Cyclin-dependent kinase 1, Arachidonate 5-lipoxygenase, NF CYP1AZ, NP
Microtubule-associaed protein ta, Cyelin-dependent Kinase 4, CYFPIDG,
Arachidonate 15-lipaxygenase, Xanthine dehydrogenase/oxidase CYP3AL
MGH CYPP450 1AZ, CYPP45D 1941, Estradiol 17-beta-dehydrogenase 1, Multidrag resistance-associated protein 1 (P-glycoprotein),  CYP1AZ P-
Carbaryd reductase [NADFH] 1, Cytochrome P450 1R1, Tyrasyls Estrogen recepbor CYFInd glveoprotein
DOMA phosphodiesterase 1, CYP1A1, Retinol debydrogenase B,
Carbanyl reductase [NADPH] 3, Adenosine receptor Al
EIT Tyrosyl-DNA phesphodiesterase 1, Microtubule-associated protein Translent receptor pstential catlon chanmel subfamily A ] NP
tau, Carbonie anhydrase 1-9, Indaleamine 2,53-dioygenase 1 and member 1, Sodium-dependent seratonin transparter
2, Crinome nxidoreductase, Carbonic anhydrase 5B
[mitochondrial), Indoleamine 2, 3-dioxygenase 1
G Carbanic anhydrase 12, Carbonic anhydrase 1-9, Tyrosyl-DRA MP CYPIn4 NP
phosphodiesterase 1, Carbonle anhydrase 58 and 54, FAD-linked
sulfhydryl oxidasze ALR
516G Androgen receptor, Tyrosyl-DMNA phosphodiesterase 1, CYPI9A1, Low-density lipoprotein receptor, Yery low-density CYPRCS NP
Fhydroxy-3-methylglutaryl-coenzyme A reductase, Lanosterol 14- lipoprotein receplos, Fstrogen receplor, Ferogen reoeplor
alpha demethylase, Ceysterols receptor LXR-heta, Oxysternls beta, Sedium-dependent noradrenaline transparter
receptor LXR-alpha
I5T Aldoeleeto reductase family | member B10, Aldose reductase, MNP CYPICH P
Corticosterodd 11-beta-dehydrogenase lsozyme 1, Hydroaysterodd glveoproteln
11-beta-dehydrogenase 1-like protein, M-phase inducer
phasphatase 1, M-phase inducer phosphatase 2, Aleohal
delydrogenase [NADP (+1], 1.5-anhydro-D-froctose reductase,
LDP-glucurcnasyltransferass
LNT Shydroxy-3-methylglutaryl-coenzyme A reductase, Lanosterel 14-  Androgen receptos, Oxysterols receptor LXH-beta, Sodium- NP NP
alpha demethylase, Cytochrome PAS0 19A1, Tyrosyl-DINA dependent nordrenaline transponter, Sodium-dependent
phosphodiesterase 1 seppdonin transporter, Sodium-dependent dopamine
transporter, Edrogen receplor, Sodium- and chloride-
dependent newtral and basic amina acid transporter B (4]
FTA Tyrosyl-DMNA phoaphodiesterase 1, Dual specificity tyrosine- Gamma-secretase C-terninal (ragment 59 NP NP

phasphordation-regulated kinase 1A, Microtubule-associnted
prodeln tau, Carbonic anhydrase 1, 2, 3, 4, 54, 58, 6, 7, 9, 13,
Carbanic anbydrase 12,

KEY: NP means Mon predicted.
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Table 3

Pharmacokinetic effects of phytochemical compounds from COA®-FS herbal
medicine on the enzymes and transporter involved in the metabolism of the four
FDA-approved Pls.

Compound Enzymes Transporter
Name
CYP3A4 CYP2C19 P-gp Substrate/
Inhibitor Inhibitor inducers
FDA-Approved Drugs
DRV Yes No Yes
LPV Yes Yes Yes
ATV Yes No Yes
SQV Yes No Yes
COA®-FS Phytochemical compounds
IST No No Yes
EGA No No No
K7G No No No
EGCG No No No
NGN Yes No Yes
GER Yes No No
INT No No No
FST Yes No No
LUT Yes No No
APG Yes No No
PTA Yes No No
STG No No No
CHD No No No
BIT No No No
GA Yes No No

enzymes (CYP450) such as CYP1A2, CYP2C19, CYP2C9, CYP2D9,
CYP2D6 and CYP3A4 and their possibility to be substrates (inducers) of
Permeability glycoprotein (P-gp). Although, the probability of DRV
and SQV binding to Renin as a target was predicted to be low, Renin is
the only enzyme predicted by the SWISSPREDICTION server to be
target for the four conventional drugs. CYP3A4 with higher probability
and cathepsin D (lower probability) were predicted to be targets for
DRV, ATV and LPV. Apart from CYP3A4 and P-gp, CYP2C19 was pre-
dicted only for LPV. For the selected phytochemical compounds,
CYP3A4 was predicted to be target for GER, APG, FST, GA, LUT, and
NGN. IST and NGN were only predicted substrates of P-gp. CYPY1A2,
CYP2D6, CYP2C9 and CYP2C19 are other sub families of cytochrome
P450 enzymes predicted by the SWISSADME server to be targets for
EGA, LUT, GER, FST, APG, CHD, NGN, STG, and IST. P-gp and CYP3A4
are the common enzyme and transporter predicted for the four drugs
and some of the phytochemical compounds (see Tables 2 and 3).

Table 4
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3.2. Pharmacokinetic effects of the phytochemical compounds on the
predicted targets involved in the metabolism of the four PI drugs

The SWISSADME server was employed to predict the pharmacoki-
netic effects of the selected phytochemical compounds from COA®-FS
herbal medicine on the Cytochrome P450 enzymes and P-glycoprotein
transporter involved in the metabolism of the four FDA-approved drugs.
The result revealed that the PI drugs showed inhibitory activities on
CYP3A4. LPV was also predicted to inhibit CYP2C19. The four drugs
were predicted inducers of P-gp, as only IST and NGN were predicted
inducers of P-gp. Seven of the phytochemical compounds were predicted
to possess inhibitory activity on CYP3A4 and none of the phytochemical
compound was predicted to inhibit CYP2C19. The inhibition of CYP3A4
and P-gp by the phytochemical compound could decrease the elimination
and pumping out of the four PI drugs from the systemic circulation and
the cells respectively.

3.3. Assessing the drug-likeness of phytochemical compounds from COA®-
FS herbal medicine

As shown in Table 4, three of the FDA-approved drugs (ATV, SQV and
LPV) with three of the selected phytochemical compounds from COA®-
FS herbal medicine (CHD, STG and NGN) are poorly soluble in water.
This may lower the bio availabilities of the three PI drugs and the three
phytochemical compounds. The result also showed the drug likeness of
the four FDA-approved drugs and the fifteen selected phytochemical
compounds from COA®-FS herbal medicine, two of the four conventional
drugs pass the drug likeness test (DRV and LPV) and Nine of the phyto-
chemical compounds (K7G, EGA, LUT, APG, FST, BIT, GA, IST and NGN)
pass the test. These showed that the nine phytochemical compounds have
good drug properties as the two conventional drugs.

3.4. Binding affinity of the phytochemical compounds from COA®-FS
herbal medicine to HIVpro

Fifteen phytochemicals from COA®-FS herbal medicine, its compo-
nent plants and four FDA-approved protease inhibitor drugs (PIs) were
docked with HIVpro to estimate the affinity of the drugs to the enzyme in
comparison to the four known PIs (Table 5). The docking score showed
the fitness of the ligands into the active site pocket of the enzyme and the
more negative the value the better the fitness of the ligand. In term of the
docking score, all the PIs are better than the phytochemical compounds
except EGA and K7G which are better than LPV. The docking scores for

Predicted ADME parameters, drug-likeness, pharmacokinetic and physicochemical properties of phytochemical compounds from COA®-FS herbal medicine and four

FDA-approved drugsusing SWISSADME server.

Compound  Molecular Molecular Lipophilicity Water GIT BBB Bioavailability ~ Synthetic Drug likeness
Name Formula Weight (g/mol) (iLOGP) Solubility Absorption Permeability Score Accessibility (Lipinski)
ATV CssH52NgO07 704.869 3.56 Poor Low No 0.17 6.24 No (2)
SQV C35H50NgOs 670.855 3.66 Poor Low No 0.17 5.94 No (2)
LPV CraHogN1g010Ss  1349.762 3.44 Poor High No 0.55 5.67 Yes
DRV CoyH37N3075 547.667 3.20 Moderate Low No 0.55 5.67 Yes
EGCG CooH15011 458.37 1.83 High Low No 0.17 4.20 No (2)
K7G Ca1Hag011 448.38 1.55 High Low No 0.17 5.24 No (2)
EGA C14HgOg 302.19 0.79 High High No 0.55 3.17 Yes
LT Ci15H1006 286.24 1.86 High High No 0.55 3.02 Yes
GER C30H2401¢ 544.51 2.14 Moderate Low No 0.17 5.73 No (2)
CHD CoyH440 384.64 4.81 Poor Low No 0.55 6.29 No (3)
APG C15H100s 270.24 1.89 Moderate High No 0.55 2.96 Yes
FST Ci15H1006 286.24 1.50 High High No 0.55 3.16 Yes
INT CsoHs00 426.72 5.09 Poor Low No 0.55 6.07 No (3)
BIT CgH7NS 149.21 2.19 High High Yes 0.55 1.59 Yes
GA C7HgOs 170.12 0.21 High High No 0.56 1.22 Yes
IST CaoH3003 318.45 2.27 Moderate High Yes 0.56 4.83 Yes
STG Ca9Has0 412.69 4.96 Poor Low No 0.55 6.21 No (3)
NGN C15H1205 27.2.25 1.75 Soluble High No 0.55 3.01 Yes
PTA CgHgO4 166.13 0.60 Soluble High No 0.56 1.00 No (2)
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Table 5
Docking scores lor the four FDXA-approved PT drugs and phytochemical
compounds from COA®-FS herbal medicine.

Compounds Name Dacking score (keal/mal)

FDA Approved Drugs

SQV -98
DRV -9.2
ATV -8.7
LPY -8.1
COA-FS Phytechemicel compoimnds

EGA -8.2
K7G -8.1
EGCG -7.5
STG -7.5
GER -7.5
NGN -7.5
CHD -7.4
LNT -7.4
FST -7.3
LT -7.3
APG -7.2
IST <71
PTA -4.8
BIT -4.6
GA -4.5

the four FDA-approved Pls range from -8.1 to -9.2 keal /mol, while Ellagic
acid and Kaempferol-7-O-glucoside showed the highest docking scores
among the fifteen phytochemical compounds and the scores fall within
the range of the docking score for the four FDA approved PI drugs. The
binding conformation of the fifteen phytochemical compounds (ligands)
and the four FDA-approved drugs were taken for further molecular dy-
namics and binding encrgy calculations.

3.5, Thermodynamic binding free energy of phytechemical compounds
from COAR-FS herbal medicine to HIVpro

Asmolecular docking only measures the geometric fit of ligands at the
active site of a protein, molecular dynamics simulations were run for
100ns to assess the binding free energy of each system. The more nega-
tive the values, the better the binding free energy between the enzyme
(HIVpro) and the ligands. The binding free energy of the four FDA-
approved drugs and the fifteen phytochemical compounds were deter-
mined using the MMGBSA method to estimate the interaction strength
between the FDA-approved inhibitors in comparison to the COA%-FS

Table 6

Heliyon 5 (2019) 02565

herbal medicine phytochemical compounds (Table 6). ATV showed the
highest binding energy than the remaining three conventional Pls and
the fifteen selected phytochemical compounds. However, EGCG had
better energy than three conventional PIs (DRV, LPV and SQV). In
addition, K7G is better than LPV and DRV.

3.6. Structurel analysis of the most optimal Phytochemical-HIVpro
complexes

''o further establish the mechanistic inhibitory characteristics of these
four selected phytochemical compounds (EGCG, K7G, EGA and LUT)
with antiviral activity against HIVpro. Root mean square deviation
(RMSD), Root mean square fluctuation (RMSF), Radius of gyration (RoG)
and ligand interaction plots were assessed,

Fig. 2 depicts the RMSD plot for the four phytochemical compounds
and the four FDA-approved drugs. RMSD measures protein stability as
the simulation progresses. The RMSD plots of K7G,EGA and EGCG with
average values of 1.432A, 1.442A and 1.465A respectively are similar to
the RMSD of ATV (1.511 A), DRV (1.4514), SQV (1.402A), apo-enzyme,
1.3424 (protease enzyme without ligand). RMSD of EGCG seems to
slightly close to the RMSD of LPV (1.9189A). The RMSD of K7G (1.3514)
showed the same similarity with RMSD of SQV (1.345 ;5&). The RMSD of
the four compounds deviates from the RMSD of LPV with the highest
average value of 2.187A. The first 40ns of simulation of LPV showed the
instability of the enzyme, but from 40 to 100ns of simulation the enzyme
was stable.

Figs. 3 and 4 showed the Radius of Gyration (RoG) and Root mean
square fluctuations values over the course of 100ns of simulations of the
HIV-1 protease enzymes bound te different ligands. RoG is a measure of
the compactness of the protein structure. The RoG values of each of the
compound were compared to the RoG of the four FDA approved drugs
(Fig. 3). RoG of EGCG (17.544 A), LUT (17.431A), EGA (17.354A) and
K7G (17.455 A) shows similarity with the RoG of LPV (17.411 }n\), ATV
(17.327 f\] and SQV (17.423 f\) but deviated from the RoG of DRV
(18.345 A). None of the four compounds showed the same trend and
values with RoG of DRV (18.345 A).

RMSF values monitor the fluctuation of each amino residue as they
interact with the ligand throughout a trajectory. The RMSF values of each
of the four phytochemical compounds were compared to the RMSE of the
four FDA-approved drugs (Fig. 4).

Fig. 5 illustrates the ligand-interaction plots of the above-mentioned
systems following the 100 ns trajectory. lhe type and number of

Thermodynamic binding free energy for Phytochemical compounds from COAB-FS herbal medicineand FDA-approved drugs to HIVpro.

Energy Components (keal/mol)

Complex A Evaw ABee AG,.. AGygl, Al
FDA-Approved Drugs

5Qv -59.300 £ 5.140 6.139 = 4,847 -53.161 = 19.400 -0.514 £1.35 -53.979 = 4874
DRV -43.805 £ 6,108 -25.424 £ 8120 -69.223 = 10.871 29,235 + 4,206 -35.311 = 4943
ATV -65.905 4 4.965 -28.758 £+ 5.760 -94.664 + 8.214 37.824 £ 4.7%6 -56.839 = 5.292
PV -51.973 £ 5.433 -27.534 + 6.605 -79.507 £ 7.958 38.291 £ 3.540 -44.571 = 3.852
COAE-FS herbal medicine Phytochemical compounds

EGCG -36.589 + 4.054 -76.679 + 10.634 -113.26 + 10.265 61.364 £+ 3.586 -55.954 = 2.705
K7G -45.850 + 4.123 -44. 778 + 9.576 -90.628 + 8.503 48269 + 5.467 -45.740 + 4.288
EGA -25.883 + 3.400 -57.201 + 6.132 -83.084 + 5.446 46.585 + 3.653 -38.500 210
LUT -26.604 + 3.702 -48.553 + 7.929 -75.157 + 6.895 41.611 + 4.879 -37.487 =1.223
GER -46.385 4 4.820 -17.37 847 -63.759 £ 7.842 29,458 + 4.423 -35.532 £ 2.510
LNT -34.047 4 5,941 -45.608 + 6,293 18170 £ 3.523 -27.486 £ 3.599
APG -31.671 £ 8.375 b2 -48.112 £+ 11.223 22104 L 4.239 -26.017 = 2.966
NGN -21.952 + 3.673 -36.188 £ 8.717 -58.140 £ 8.018 35.379 £ 5.518 -22.761 = 4.494
5TG -20.604 + 4.023 200222 + 4907 -0.373 — 1.485 -19.216 + 4776 -19.584 — 5.041
BIT -18.433 4+ 3.600 -264.05 + 22.483 -225.00 + 14.578 20099 + 17.374 -18.014 + 3.083
GA -18.545 + 6.221 -252.3 3.425 -213.60 + 20.032 195.98 + 19.394 -17.622 + 2.094
15T -18.825 1 3.748 -254.24 L 4.827 -215.62 L 12,739 198.31 L 9.202 -17.215 L 2.650
CHD -18.52 3777 -245.58 L 10.393 -206.68 L 11.342 188,51 L 9.542 -17.184 L 2417
FST -17.65 — 4.034 1 -213.67 L 8.284 198.16 L 7.5323 -15.516 L 3.993
PTA -21.145 + 2.327 -38.312 + 3.942 23.679 + 2.555 -14.633 — 2.248
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Fig. 2. RMSD profile of protein backbone atoms of PRO, ATV, DRV and SQV with (a) EGCG (h) K7G (c) EGA and (d) LUT calculated over the course of 100 ns
molecular dynamies of HIVpro bound to the four different ligands and FDA-approved PI drugs.

interactions between proteins and ligands are the major determinants of
the overall binding free energy.

4. Discussion

4.1. Assessing the predicted targets for the drugs and phytochemical
compounds

The result of this study showed the predicted targets for the four
conventional drugs and the phytochemical compounds from COA®-FS
herbal medicine. Cytochrome P450 3A4 and CYP2C19, two sub families
of cytochrome P450 enzymes were predicted to be involved in the
metabolism of the four FDA-approved drugs. CYP3A4 was the predicted
common target for the four conventional drugs, but LPV was additionally
predicted to be inhibitor of CYP2C19. This prediction is in agreement
with the report of Brian et al. and Vaishali et al. that reported CYP3A4 is
the major form of cytochrome P450 enzymes involved in the metabolism
of HIV protease inhibitor drugs (Brian et al., 2011; Vaishali et al., 2007).
All the four FDA-approved drugs were as well predicted to be substlates
of Permeability glycoprotein (P-gp), this validate the report of Griffin
et al. that reported that P-gp was actively involved in the metabolism of
PI drugs (Griffin et al., 2011). A different sub type of cytochrome P450
were predicted targets for the phytochemical compounds. Cytochrome
P450 1A2 (CYP 450 1A2) was predicted for EGA, FST, NGN, LUT and
APG, while CYP 450 2D6 was predicted target for FST, APG and LUT.
CYP3A4 and multi-drug resistant protein (P-gp) are the commeonly pre-
dicted targets for the FDA-approved drug and the phytochemicals.

4.2, Pharmacokinetic effects of the phytochemical compounds on the
predicted targets involved in the metabolism of the four PI drugs

The SWISSTARGETPREDICTION and SWISSADME servers predicted
many enzymes and transporters as targets for the four drugs based on
structures of the drugs and physiological conditions. The SWISSADME
server prediction for the four drugs validated studies that reported
CYP3A4 and P-gp are the major enzyme and transporter involved in the

metabolism of the PI drugs (Huisman et al., 2001; Sanjay et al., 2004;
Walubo, 2007). Several studies have also shown that both CYP3A4 and
P-gp have a wide and overlapping substrate specificity (Konig et al.,
2013; Fromm, 2004), as this explained why the four PI drugs are both
inhibitors and inducers of CYP3A4 and P-gp respectively. The pharma-
cokinetic effect of the phytochemicals on CYP3A and P-gp revealed that
NGN, GER, FST, LUT, APG, PTA and GA are inhibitors of CYP 3A4. In-
hibition of CYP3A4 has been reported to decrease the rate of elimination
of drugs from the systemic circulation thereby increasing bioavailability
of drugs (Liyue et al., 2001). The phytochemical compounds from
COA®-FS herbal medicine predicted to be inhibitors of CYP3A4, when
used concurrently with PI drugs could increase the bicavailability of the
four FDA-approved PI drugs and enhance them to maximally exert their
pharmacological effects. NGN and IST were predicted inducers of P-gp
and could increase the rate of elimination of the four drugs thereby
lowering PI drugs bioavailability (Richard et al., 2014). Other phyto-
chemical compounds from COA®-FS herbal medicine were predicted to
be non-inducers of P-gp and could inhibit the activity of P-gp to increase
PI drugs bioavailability.

The result of this study revealed phytochemical compounds from-
COA®-FS herbal medicine and its constituent plants are predicted in-
hibitors of CYP3A and P-gp, and they could increase the bioavailability of
PI drugs in the plasma drug, resulting to the drug being slowly eliminated
from the systemic circulation and exerting their therapeutic antiviral
effects.

4.3. Assessing the drug-likeness of phytochemical compounds from COA®-
FS herbal medicine

One of the important rules in drug design is Lipinski's rule, it is a set of
five rules use to assess the drug-likeness of a compound with pharma-
cological or biological activities with the aim of examining if it possess
both physical and chemical properties to act as an orally active drug in
humans (Lipinski, 2004; Lipinski et al., 2012). The rule centred on the
number of hydrogen bond donors in the compound (not more than 5), a
few hydrogen bond acceptor (not more than 10), molecular mass less
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Fig. 3. RoG profile of protein backbone atoms of PRO, ATV, DRV and SQV with (a) K7G (b) LUT (c¢) EGCG and (d) EGA calculated over the course of 10¢ ns molecular

dynamics of HIVpro bound to different ligands and drugs.

than 500 daltons and partition coefficient (logP) not greater than 5. The
result showed two of the conventional drugs (LPV and DRV) and eight of
the phytochemical compounds from COA®-FS herbal medicine (EGA,
LUT, APG, FST, BIT, GA, IST and NGN) were predicted to pass the rules.
This indicate that the eight phytochemical compounds from COA®-FS
herbal medicine possess the same chemical and physical properties with
two of the FDA-approved drugs (LPV and DRV). ATV and DRV, the
conventional drugs together with seven of the compounds failed a
maximum of three out of the rules.

Gastrointestinal (GIT) absorption is significant for the maintenance of
optimal drug levels in the systemic circulation. For drugs or potential
compounds to reach their target, they must be absorbed from the GIT and
enter the systemic circulation in enough amount or quantities (Kremers,
2002). Highly absorbed drugs from the GIT will easily attain optimal
concentration and exert a pharmacological effect at its target site. LPV is
the only drug out of the four conventional drugs that has high GIT ab-
sorption, while the remaining drugs' absorptions in GIT are low. Nine out
of the fifteen phytochemical compounds from COA®-FS herbal medicine
were predicted to be highly absorbed from the GIT (EGA, LUT, APG, FST,
BIT, GA, IST, NGN, and PTA) and could eventually attain the required
concentration needed for therapeutic effects.

The blood-brain barrier (BBB) is a protection developed by the
endothelial cells that line cerebral microvessels (Abbott, 2002; Begley
and Brightman, 2011) and drugs or compounds that are not soluble in
lipid with molecular weight greater than 400 Dalton cannot go across the
BBB but smaller and lipophilic molecules can go across the BBB (Begley
and Brightman, 2011). Therefore, BBB permeability parameter is always
considered in the development of a drug for neuro-degenerated and
related diseases. None of the four FDA-approved conventional drugs was
predicted to permeate the BBB and only two of the phytochemical
compounds from COA®-FS herbal medicine (BIT and IST) were predicted
to go across the BBB.

Drug bioavailability is a measurement of the degree of absorption and
fraction of a given amount of unchanged drug that goes to the systemic
circulation (Heaney, 2018). Orally and intravenously administered drug
have different bioavailability as a result of some factors like first
pass-drug metabolism. It is a significant pharmacokinetic property of the
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drug that must be carefully thought of when calculating drug dosages.
Higher bioavailability score is required for a drug to reach a higher and
optimal concentration in the systemic circulation and to exert notable
pharmacological response. When compared with the four conventional
drugs, ATV and SQV have low and the same bioavailability scores of 0.17
with EGCG, GER and K7G. Slightly higher bioavailability scores of 0.55
were predicted for LPV and DRV, and the other phytochemical com-
pounds from COA®-FS herbal medicine.

4.4. Thermodynamic binding free energy of phytochemical compounds to
HivVpro

The binding free energy calculated for the four conventional drugs
ranges from -35.311 + 4.943 to -56.056 + 4.978 kcal/mol, with Ataza-
navir (ATV) and Darunavir having the highest and the lowest values
respectively. Epigallocatechin gallate (EGCG), Kaempferol-7-O-glucoside
(K7G), Ellagic acid (EGA) and Luteolin (LUT)indicated the most optimal
binding when compared to the FDA approved drugs. It was also inter-
esting to note that although compounds FST, APG and NGN demon-
strated relatively high docking scores, binding free energy calculations
for these systems indicated dissimilar results. This validates the need for
molecular dynamics simulations, which may allow for a compound to
become “comfortable” within an enzyme's binding site. To further
establish the mechanistic inhibitory characteristics of the best four
phytochemical compounds (EGCG, K7G, EGA and LUT) with higher free
binding energy, RMSD, RoG, RMSF, and ligand interaction plots were
assessed.

4.5. Structural analysis of the most optimal phytochemical compound-
HIVpro complexes

The structural stability of a protein complex was measured following
experimental simulation of the phytochemical compounds together with
the protein. Root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) were studied in several molecular dynamics studies
to study conformational stability of ligands and proteins (Agoni et al.,
2018; Mcgillewie and Soliman, 2015; Munsamy et al., 2018; Ramharack
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Fig. 4. RMSF profile of protein backbone atoms of PRO, ATV, DRV and SQV with (a) K7G (b) LUT (c) EGA and (d) EGCG calculated over the course of 100 ns
molecular dynamics of HVpro bound to four different ligands and FDA-approved drugs.

et al., 2017). The deviation produced by a protein during stimulation is a
factor determining its stability, and the lower the deviation produced the
more stable the protein. Therefore, RMSD, which measures protein sta-
bility as the simulation progresses, can be used to determine protein
stability. In this study, RMSD values for the C-alpha atoms of the struc-
tures were determined. The RMSD values of the HIVpro-ligands (four
FDA approved drugs and four compounds with highest binding energies)
complexes are shown in Fig. 2.

The RMSD of each phytochemical compound was compared to the
RMSD values of the four FDA approved drugs. The RMSD plots of three
phytochemical compounds (EGCG, EGA and K7G) are like the RMSD
values of the of the FDA-approved drugs (ATV, SQV and DRV} and apo-
enzyme. This indicates the same enzyme stability was seen between the
three phytochemical compounds and three of the FDA-approved drugs
and the apo-enzyme (positive control). The RMSD value of the LUT
(1.8431"&.) is slightly similar to that of LPV (2.187).

The values of the radius of gyration (RoG) were also plotted for each
system. RoG is a measure of the compactness of the protein structure.
The RoG values of each of the phytochemical compounds from COA®R-
FS herbal medicine were compared to the RoG of the four FDA
approved drugs and the apo-enzyme (Fig. 3). The four phytochemical
compounds shows similarity with the RoG of three of the FDA-
approved protease inhibitor drugs (LPV, SQV and ATV) and the apo-
enzyme but deviated from the RoG of value of DRV (18.345 A). Like
the RMSD values, none of the four phytochemical compounds from
COA®-FS herbal medicine showed the same trend and values with RoG
of DRV (18.345 A).

The RMSF values monitor the fluctuation of each amino residue as
they interact with the ligand throughout the trajectory. The RMSF values
of each of the compound were compared to the RMSF of the four FDA
approved drugs (Fig. 4). Based on the RMSF results, it was evident that
the DRV (1.694) and LPV (1.380)systems demonstrated highest fluctu-
ations, particularly at residues 50, 80, 115-120 and 130-155. The K7G
(1.130) system showed the greatest similarity to the four FDA-approved
drugs, with fluctuations occurring with similar residues. With this being
said, fluctuations at 45-55 and 145-155 are mirror residues in dimeric
form. This substantiates the necessity of the dimeric activity of the HIV-
protease (Hayashi et al., 2014).
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4.6. Ligand-HiVpro interactions with different amino acid residues

As mentioned above, ATV at the HIVpro binding led to the highest
free binding energy of the 19 systems. These results may be attributed to
the greater number of hydrogen bond interactions produced between the
drug and HIVpro amino acid residues (ASP128, GLY126, ASP124,
THR179, ALA127, PRO180, GLY49, GLY27, ASP25, and ILE47). The
hydrogen bond interactions for SQV, LPV, and DRV are 4, 5 and 4
respectively. A Salt-bridge interaction at amino residue ASP25, together
with numerous van der Waals, alkyl, and Pi-alkyl interactions contrib-
uted to the SQV-system gaining second highest binding energy. With 20
van der Waals interactions and 5 hydrogen bond interactions, LPV
showed higher binding energy than DRV. Of the phytochemical com-
pounds, EGCG demonstrated the highest binding energy. This may have
been the result of salt-bridge interaction at ARG107, 6 hydrogen bond
interactions, 13 van der Waals and 3 Pi-alkyl interactions. It was inter-
esting to note that the “two-component” salt-bridges, made up of a
hydrogen bond and electrostatic interaction, were only recorded within
the EGCG and SQV systems. This could have led to the overall binding
energy of EGCG higher than K7G, despite K7G having a higher overall
number of interactions. EGA and LUT possess 3 and 4 hydrogen bond, 6
and 8 van der Waals, and 2 each of Pi-alkyl interactions respectively.

5. Conclusion

The predictive analysis predicted several enzymes and transporters as
targets for the four FDA-approved drugs and the phytochemical com-
pounds but CYP3A4 enzyme and P-gp transporters are majorly involved
in the metabolism of PI drugs. The analysis also predicted both inhibitors
and inducers of CYP3A4 and P-gp among the phytochemical compounds
from COA®-FS herbal medicine and its component plants. The phyto-
chemical compounds predicted to be inhibitors of CYP3A4 and P-gp
could increase the bioavailability of the four FDA-approved drugs in the
systemic circulation thereby enhancing the four drugs to exert maximum
pharmacological effects. The Fifteen selected phytochemical compounds
from COA-FS herbal medicine and its component plants were subjected
to docking studies with HIVpro to recognize the best natural potential
inhibitors as compared to the four FDA-approved HIVpro inhibitor drugs
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Fig. 5. Representation of ligand-HIVpro interactions with different amino acid residues.

in term of binding free energy/affinity. Of all the docked selected
phytochemical compounds, EGCG, K7G, EGA, NGN, STG, GER, and LUT
gave the best binding score when compared to the four conventional
drugs. Molecular dynamics and MMGBSA analysis were done on all the
fifteen compounds and the drugs. The results of the MD simulations and
MMGBSA showed that only EGCG, K7G, EGA and LUT fit well into the
HIVpro active site pocket with better binding free energy. The study
implied that the ligands interacted hydrophobically with the active
amino residues. This study also identified some of the key residues that
are helpful in dual inhibitor design. The EGCG and k7G compounds
proved to be more potent inhibitors of HIVpro. Therefore, this study
showed that some of the phytochemical compounds could be utilised to
enhance therapeutic effect of the four FDA-approved drugs and, could as
well serve as natural inhibitors of HIVpro and be used as important
standard in developing novel drugs to inhibit the activity of HIVpro.
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ABSTRACT

P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4) metabolize almost all known human
immunodeficiency virus’ protease inhibitor drugs (Pls). Over induction of these proteins’ activities has
been linked to rapid metabolism of Pls which are then pumped out of the circulatory system, eventu-
ally leading to drug-resistance in HIV-positive patients. This study aims to determine, with the use of
computational tools, the inhibitory potential of four phytochemical compounds (PCs) (epigallocatechin
gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) in inhibiting the
activities of these drug-metabolizing proteins. The comparative analysis of the MM/GBSA results
revealed that the binding affinity (AGpina) of EGCG and K7G for CYP3A4 and ABCB1 are higher than
LUT and EGA and fall between the AG;,q of the inhibitors of CYP3A4 and ABCB1 (Ritonavir (strong
inhibitor) and Lopinavir (moderate inhibitor)). The structural analysis (RMSD, RMSF, RoG and protein-
ligand interaction plots) also confirmed that EGCG and K7G showed similar inhibitory activities with
the inhibitors. The study has shown that EGCG and K7G have inhibitory activities against the two pro-
teins and assumes they could decrease intracellular efflux of Pls, consequently increasing the optimal
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concentration of Pls in the systemic circulation.

Introduction

P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4)
have been reported to play significant roles in the metabol-
ism of many protease inhibitors drugs (Pls). Over induction
of ABCB1 and CYP3A4 has been reported to lead to rapid
metabolism and elimination of Pls from the systemic circula-
tion, and alter Pls’ pharmacokinetics by reducing bioavailabil-
ity which can result in patients developing resistance to Pls
(Liyue et al,, 2001; Weiss et al.,, 2007).

P-glycoprotein are essential proteins present in the cell
membrane, encoded in humans by the ABCB1 gene
(Dhananjay et al., 2011; Van Waterschoot et al., 2010). As an
ATP-dependent efflux pump they have a broad substrate
specificity, and their primary role is to pump many poten-
tially toxic substances out of the cells and influence the bio-
availability of drugs and other compounds. Evidence
suggests that ABC transport proteins caused drug resistance
and alter Pl pharmacokinetics by reducing bioavailability and
decreasing accumulation in organs and tissues (Weiss &
Haefeli, 2010). Van Waterschoot et al. reported that all known
Pls are substrates of P-glycoprotein (Van Waterschoot et al.,
2010), and over-expression of P-glycoprotein reduces the
concentration of Pls (Konig et al., 2013). Pls such as

Atazanavir (ATV), Lopinavir (LPV), Amprenavir (AMP) and
Ritonavir (RTV) have been reported to be inhibitors of ABCB1
(Bierman et al., 2010; Fromm, 2004; Janneh et al., 2007).

Cytochrome P450 can deactivate drugs, either directly or
by facilitated elimination from the system, as well as to bio-
activate several substances to form their active compounds.
Cytochrome P450 are membrane bound CYP450 enzymes
containing heme as a cofactor (Danielson, 2002). CYP3A4 is a
subtype of CYP450 and is known to metabolize many of the
Pls (Walubo, 2007). While a study have shown that some
drugs can inhibit the activity of CYP3A4 enzyme, for
example, was reported to be strong inhibitors of CYP3A4
(Walubo, 2007), which might result to decrease hepatic
metabolism and an increase in the concentration of drugs
metabolized by CYP3A4. Studies have reported substrates
overlapping between the two proteins; for example cyclo-
sporin and ritonavir inhibits both proteins), many drug-drug
interactions are attributed to either inhibition or induction of
both P-glycoprotein and CYP3A4 (Fromm, 2004; Konig et al.,
2013). This substrate overlapping has prompted many to
hypothesize that inhibition of CYP3A4 may be a fundamental
characteristic of inhibitors of ABCB1 (Konig et al,, 2013; Pan
& Aller, 2015).
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In silico determination of potential antiviral activities of
phytochemical compounds (PCs) from our laboratory reported
that four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glu-
coside (K7G), luteolin (LUT) and ellagic acid (EGA)) possess
inhibitory activities against the HIV-1 protease enzyme similar
to the control FDA-approved Pls (Idowu et al, 2019). Several
in vitro studies have also reported the inhibitory activities of
these four compounds against HIV-1 reverse transcriptase, inte-
grase and protease enzymes' activities (Mahmood et al., 1996;
Tripoli et al., 2007; Yamaguchi et al, 2002; Yang et al., 2014).

One of the limitations of the current antiretroviral therapy
(ARV), is the inability of ARVs to reach sanctuary sites of HIV
or suboptimal antiretroviral concentrations at these sites in
the body (sites such as central nervous system, gut-associ-
ated lymphoid tissue, lymph nodes, and tissue macrophages)
(Cory et al., 2013; Varatharajan & Thomas, 2009). This is
because many ARVs are substrates of efflux transporters and
metabolic enzymes (such as P-glycoprotein and CYP3A4)
(Cory et al, 2013; Loscher & Potschka, 2005). Inhibiting the
activities of efflux transporters and the metabolism of ARV is
an important strategy in increasing the concentrations of
ARV. Studies have shown that EGCG and EGA inhibit the
activities of ABCB1 and CYP3A4 (Athukuri & Neerati, 2017;
Shaik & Vanapatla, 2019) but, no study has reported on K7G
and LUT. Athukuri et al. reported in an in vitro study that the
bioavailability of diltiazem was significantly raised when
treated with ellagic acid as a result of inhibition of CYP3A4-
mediated drug metabolism and ABCB1-mediated efflux in
the intestine, ileum and liver (Athukuri & Neerati, 2017). The
study further reported that both the peak plasma concentra-
tion (Cmax) and area under plasma concentration-time curve
(AUC) were improved by the EGA treatment (Athukuri &
Neerati, 2017). In a separate study by Shaik & Vanapatla, EGA
through the inhibition of ABCB1 was reported to significantly
improve the Cmax, AUC and increase the bioavailability of
oral linagliptin in rats (Shaik & Vanapatla, 2019). EGCG at
both 3 and 10mg/kg significantly increase the bioavailability
of tamoxifen (Shin & Choi, 2009). The bioavailability of tam-
oxifen was approximately twice greater than that of the con-
trol group and the AUC was significantly increased in the
presence of EGCG. The study suggested that the increase in
biocavailability of tamoxifen is due to the decrease in first-
pass metabolism in the intestine and liver by the inhibition
of ABCB1 and CYP3A4 (Shin & Choi, 2009).

It is therefore essential to source natural compounds that
can inhibit the activities of these drug-metabolism proteins
to boost the bioavailability of Pls in the plasma and sanctu-
ary sites. This study, therefore, investigated the inhibitory
potentials of these PCs and their mechanism of inhibiting
the Pl-metabolizing proteins (CYP3A4 and ABCB1) using com-
putational tools.

Methods

P-glycoprotein transporter and CYP3A4 enzyme, ligand
acquisition and preparation

The X-ray crystal structures of the P-glycoprotein 1 (PDB
code: 6C0OV) (Kim & Chen, 2018) and CYP3A4 (PDB code:

4NY4 (Branden et al, 2014)) were obtained from publicly
available RSCB Protein Data Bank. The structures of the pro-
teins were then prepared on the UCSF Chimera software
package. Two drugs reported to be inhibitors of CYP3A4 and
ABCBT1, Lopinavir (Storch et al., 2007; Weemhoff et al., 2003),
and Ritonavir (Drewe et al., 1999; Storch et al,, 2007), as well
as the four antiviral PCs, were accessed from PubChem (Kim
et al, 2016) and the 3-D structures prepared on the
Avogadro software package (Hanwell et al, 2012). The two
FDA-approved drugs were used as positive controls.

Before the docking, redocking was performed to validate
the docking protocol used. The crystalized structures of the
natural substrate of the proteins and the ligand-complexes
were superimposed to demonstrate binding of the ligands at
the same region or site on the proteins and their respective
RMSD values evaluated (Figure 1).

Molecular docking

The Molecular docking software utilized in this study was the
Autodock Vina Plugin available on Chimera (Yang et al,
2012), with default docking parameters. The structure of the
proteins were prepared removing water molecules, nonstan-
dard naming, protein residue connectivity. The missing
atoms of side-chains and protein backbone were added in
the protein structure before the molecular docking. Gasteiger
charges were added to the compounds, and the non-polar
hydrogen atoms were merged to carbon atoms. The PCs
were then docked into the nucleotide-binding domain
pocket of ABCB1 and the active site of CYP3A4 (by defining
the grid box with a spacing of 1A and size of 106 x 112 x 64
and 52 x 38 x 52 pointing in x, y and z directions respect-
ively). The two FDA-approved drugs (Lopinavir and Ritonavir)
systems, as well as the four PCs systems, were then sub-
jected to molecular dynamics simulations. Studies have
reported both Lopinavir and Ritonavir to be inhibitors of
CYP3A4 and ABCB1 (Drewe et al., 1999; Storch et al., 2007;
Weembhoff et al.,, 2003).

Molecular dynamic (MD) simulations

The MD simulation was performed as described by Idowu
et al. (2019). The simulation were performed using the GPU
version provided with the AMBER package (AMBER 18), in
which the FF18SB variant of the AMBER force field (Nair &
Miners, 2014) was used to describe the systems.

ANTECHAMBER was used to generate atomic partial
charges for the compounds by utilizing the Restrained
Electrostatic Potential (RESP) and the General Amber Force
Field (GAFF) procedures. The Leap module of AMBER 18
allowed for the addition of hydrogen atoms, as well as CI°
counter ions for neutralization all (both ABCB1 and CYP3A4)
systems. The amino acids were numbered, numbering resi-
dues 1-1242 for ABCB1 and 1-484 for CYP3A4. The systems
were then suspended implicitly within an orthorhombic box
of TIP3P water molecules such that all atoms were within 8 A
of any box edge (Jorgensen et al., 1983).
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Figure 1. Superpositions of the crystalized structures of the natural substrates (in red) of the proteins and the ligand-complexes (in green). a) ABCB1 b) CYP3A4

and their respective RMSD values.

An initial minimization of 2000 steps were carried out
with an applied restraint potential of 500 kcal/mol for both
solutes, were performed for 1000 steps using the steepest
descent method followed by 1000 steps of conjugate gra-
dients. An additional full minimization of 1000 steps was fur-
ther carried out using the conjugate gradient algorithm
without restraint. A gradual heating MD simulation from 0K
to 300K was executed for 50ps, such that the systems main-
tained a fixed number of atoms and fixed volume. The sol-
utes within the systems were imposed with a potential
harmonic restraint of 10kcal/mol and collision frequency of
1.0ps. Following heating, an equilibration estimating 500 ps
of each system was conducted; the operating temperature
was kept constant at 300 K. Additional features such as sev-
eral atoms and pressure were also kept constant mimicking
an isobaric-isothermal ensemble. The system’s pressure was
maintained at 1bar using the Berendsen barostat (Basconi &
Shirts, 2013; Gonnet, 2007).

The total time for the MD simulations conducted were
100ns. In each simulation, the SHAKE algorithm was
employed to constrict the bonds of hydrogen atoms
(Ryckaert et al., 1977). The step size of each simulation was
2fs, and an SPFP precision model was used. The simulations
coincided with the isobaric-isothermal ensemble (NPT), with
randomized seeding, the constant pressure of 1bar main-
tained by the Berendsen barostat (Basconi & Shirts, 2013), a
pressure-coupling constant of 2ps, a temperature of 300K
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and Langevin thermostat (Izaguirre et al., 2001) with a colli-
sion frequency of 1.0ps.

Post-dynamic analysis

Analysis of root means square deviation (RMSD), root means
square fluctuation (RMSF), Solvent accessible surface area
(SASA) and Radius of Gyration (RoG) was done using the
CPPTRAJ module employed in the AMBER 18 suit
(Shunmugam & Soliman, 2018). All raw data plots were gen-
erated using the Origin data analysis software (Seifert, 2014).

Binding free energy calculations

To estimate and compare the binding affinity of the systems,
the free binding energy was calculated using the Molecular
Mechanics/GB Surface Area method (MM/GBSA) (Ylilauri &
Pentikdinen, 2013). Binding free energy was averaged over
100000 snapshots extracted from the 100 ns trajectory. The
free binding energy (AG) computed by this method for each
molecular species (complex, ligand, and receptor) can be
represented as:

AGbind = Gcomp!ex - Greceptor - Gligand (1)
AGping = Egas + Gsol = TS (2

Egas == Eint -+ Evdw + Eele (3)

Gsol = Ggg + Gsa (4)
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Gsa = YSASA (5)

The term Ey,, denotes the gas-phase energy, which con-
sists of the internal energy Ej,; Coulomb energy Ege and the
van der Waals energies E,qw. The Eqas was directly estimated
from the FF14SB force field terms. Solvation free energy, Gl
was estimated from the energy contribution from the polar
states, GGB, and non-polar states, G. The non-polar solvation
energy, SA. GSA, was determined from the solvent-accessible
surface area (SASA), using a water probe radius of 1.4 A In
contrast, the polar solvation, GGB, the contribution was esti-
mated by solving the GB equation. S and T denote the total
entropy of the solute and temperature, respectively.

Results and discussions

Stability and flexibility of proteins apo and
bound systems

To discover the dynamic stability of the systems and to
evaluate the MD simulations, root means square deviation
(RMSD) values of alpha carbon (Co) atoms were monitored
along the entire MD trajectory for both the apo and the
bound systems (Figure 2). RMSD is a measure of system con-
vergence and stability (Hess, 2002) and the deviation pro-
duced by a protein during MD simulation is a factor
determining its stability; the lower the deviation produced
the more stable the protein. As shown in Figure 1(a-d), the
overall RMSD values of the complexes of the four PCs and
the two drugs are lower than the RMSD value of the ABCB1
apoenzyme implying that the binding of the ligand brings
more stability to the enzyme. The result showed that the
binding of inhibitors drastically influences the dynamic of P-
glycoprotein, which can be reflected in the function of the
protein (Shekari et al, 2015). Unlike the RMSD pattern
observed in the apo and bound systems of ABCB1, the bind-
ing of the four ligands raised the RMSD values higher than
the value of the apo for CYP3A4, while the values of the two
FDA-approved drugs are lower than that of the apo.
However, the higher RMSD values observed in the four PCs
complexes showed that the binding of ligands does not dis-
rupt the stability of the enzymes (CYP3A4), and the functions
of the proteins were not altered.

The radius of gyration (RoG)

Graphical plots of the radius of gyration were plotted for the
systems after 100 ns MD simulation. The RoG was carried out
to evaluate the overall structural compactness of the systems
(McGillewie et al, 2017; Salleh et al., 2012; Sindhu &
Srinivasan, 2015). The plots of RoG for the apoenzymes and
the bound ligands for both CYP3A4 and ABCB1 are shown in
Figure 3. For the P-glycoprotein complexes, the average val-
ues for the RoG of the PCs were compared to the average
values of the two FDA-approved inhibitors of the two
enzymes. The result showed that the apo has an average
value of 38467A. Values of 38012A, 38253, 38.398A,
38501 A, 38689A and 38.872 A were recorded for LUT, EGA,
EGCG, K7G, LPV and RTV respectively. K7G showed RoG
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values that are most similar to the average values recorded
for LPV and RTV. These results suggested that the binding of
the three compounds induced conformational changes simi-
lar to both LPV and RTV. In complex with the CYP3A4
enzyme, the average RoG values for EGA, apo, RTV, LUT, K7G,
EGCG and LPV are 22.862A, 23.013A, 23.113A, 23.232A,
23.254 A, 23.223A and 23.652 A respectively. Similar degrees
of structural compactness were observed between RTV and
LUT and K7G. The study therefore suggests that conform-
ational changes that occurred in K7G, EGCG and LUT induced
a more favourable structural compactness that enhances the
stability of the protein in a similar way with RTV.

Root means square fluctuation (RMSF) plots (Figure 4)
showed the effect of the binding of the ligands on the
behaviour of the active residue. Higher fluctuation values
indicated more flexible movements, and in contrast, reduced
values expressed restricted fluctuations during the simulation
(Kumar et al,, 2014). From the RMSF plots, the apo (ABCB1)
showed the overall highest fluctuation value of 5.53A.
However, the binding of ligands at the active sites of the
protein lowered the overall fluctuation values for the respect-
ive ligands. This agrees with the study of Pan and Stephen,
that also reported decreased in the RMSF values after ligand
binding to ABCB1 (Pan & Aller, 2015). RTV and LPV showed
average values of 452A and 5.11A respectively. K7G
(4301A) and EGCG (4.33A) showed average RMSF values of
similar to RTV (4.52 A). EGA (3.51A) and LUT (3.07 A) showed
RMSF values lower than that the recorded values for the two
inhibitors (Figure 4(a-d)). The decrease in fluctuation
observed in all the compounds strongly indicated that their
binding lowered dynamic residual fluctuations of the
enzyme, thus inducing stability of the complex state (Kumar
et al., 2014; Shunmugam & Soliman, 2018).

Figure 4(e-h) showed the RMSF plots of both the apo
and the bound systems of CYP3A4. Similar protein fluctu-
ation and flexibility were observed in the CYP3A4 system
when compared to the P-gp. Generally, higher fluctuation
and flexibility in the amino acid residues 140-240 was
observed in all the PCs and the two drugs bound systems of
CYP3A4, and the average fluctuation values for all the
ligands (RTV 4.43A, LPV 34A, K7G 45A, EGCG 4.34A, EGA
443A and LUT 4.23A) are lower than the Apo values
(5.77 A). When compared with the two inhibitors, K7G, EGCG,
LUT and EGA showed similar RMSF values with RTV.

Solvent accessible surface area (SASA)

In addition to the RMSD, RoG and RMSF plots, SASA is also a
vital parameter to examine the impact of the binding of the
different ligands to the two enzymes (CYP3A4 and ABCBI1).
The SASA quantifies the enzyme exposure to solvent mole-
cules (Boyce et al., 2014).

In the ABCB1 system (Figure 5(a-d)), the average SASA
values for EGA, LUT, APO, LPV, RTV, K7G and EGCG were
4533353 A?, 45,8212 A% 4633363 A% 47,500.00 AZ
47,8333.33 A% 48,166.67 A*> and 48,723.73 A? respectively.
Dedline in the exposure of LPV (at approximately 20ns), and
both EGCG and K7G (at approximately 60 ns) was observed,
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Figure 2. Comparative RMSD profile plots of C-a atoms of the ABCB1, RTV and LPV with ligands, a) K7G, b) EGCG, ¢) EGA and d) LUT systems and CYP3A4, RTV and
LPV with €) K7G, f) EGCG, g) EGA and h) LUT calculated throughout 100 ns molecular dynamics simulation.
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Figure 3. RoG profile of protein backbone atoms calculated throughout 100 ns molecular dynamics simulation of ABCB1 bound RTV, LPV and ligands, a) K7G, b)
EGCG, ¢) EGA and d) LUT and CYP3A4 bound to RTV, LPV and ligands, ) K7G, f) EGCG, g) EGA and h) LUT.

followed by consistent exposure to the solvent molecules. the SASA plots after 20 ns for LPV and stable plots for EGCG
This is an indication that the structural integrity of the pro- and K7G, indicated that the enzyme structural integrity is not
tein was altered after 20 ns for LPV and 60 ns for both EGCG altered (Boyce et al., 2014). When compared to the inhibitors,
and K7G respectively. However, the progressive increase in EGCG and K7G showed more similarity in SASA values with
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both RTV and LPV. In the CYP3A4 systems (Figure 5(e-h)),
EGA (22,000.00 A?) shows the average SASA values similar to
RTV (21,83333 A?), while EGCG (22,821.33 A?), K7G
(22.333.33 A?) and LUT (22,166.62 A?) showed similar values
with LPV (22,333.33 A?).

dynamics simulation.

Thermodynamic binding free energy of the inhibitor
drugs and PCs to CYP3A4 and ABCB1

After the 100ns MD simulation, the binding free energy
(AGging) was calculated using the MM/GBSA method. The
MM/GBSA calculations have been widely used to evaluate
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Table 1. Thermodynamic binding free energy for PCs and inhibitors of ABCB1 and CYP3A4 energy components (kcal/mol).

P-gp (ABCB1)

Complex AE 4w AEgjec AGgy AGgyy AGping
Inhibitors
RTV —64.77 £5.04 —31.62+9.99 —7139+1332 36.07 £9.21 —60.33+5.52
LPV —6542+4.74 —4037+5.98 —105.79£6.73 60.92 +£5.87 —44.87 +4.02
Phytochemical Compounds
EGCG —51.36+4.60 —84.47 +£9.55 —135.83 £8.56 7289 +5.41 —5294+5.73
K7G —58.39+5.63 —47.27+12.30 —100.66 +14.85 62.66 +8.36 —4201+3.86
EGA —38.61+4.84 —31.32+18.94 —69.93 +15.81 40.19+8.93 —29.73+8.02
LUT —35.66 +3.37 —1826+9.16 —53.92+1034 29.01+5.40 —2492+5.85
CYP3A4
Inhibitors
RTV —81.94+4.98 —36.21+8.22 —122.15+10.89 4797 +4.38 —70.188+5.28
LPV —66.94 +4.31 —23.15+8.69 —90.09+9.88 4479 +£6.14 —43.299+5.80
Phytochemical Compounds
EGCG —5321+4.09 —7397+£11.42 —126.18+10.84 7397 £5.66 —5421+4.42
K7G —50.32+4.39 —5743+11.76 —105.75+11.01 60.98 +£7.65 —4877+4.23
EGA —39.54+3.31 —3863+11.53 —76.16+10.28 33.95+5.72 —4621+3.32
LUT —36.97 +3.19 —25.85+5.30 —62.82+5.71 26.34+4.32 —3647+3.03
A

Lys1147

Figure 6. Amino acid residues at the NBD of ABCB1 (a) and catalytic site of CYP3A4 (b).

the total binding energy of compounds to protein
(Farrokhzadeh et al, 2019; Massova & Kollman, 2000;
Osterberg et al, 2002; Pang et al, 2018; Ramharack &
Soliman, 2018; Ylilauri & Pentikainen, 2013). From the MD tra-
jectory analysis, the affinity of a ligand to a protein is com-
puted. The binding energies of all the ligands (both the
conventional drugs and compounds) were calculated, to
understand the inhibitory potentials of the ligands (Table 1).

RTV, a potent inhibitor of both CYP3A4 and ABCB1 showed
the highest AGpjng of —60.326 kcal/mol and —70.188 kcal/mol
ABCB1 and CYP3A4, respectively. This was expected as RTV has
been reported to be a potent inhibitor of both proteins and is
currently used in combination with HIV Pls (Meintjes et al,
2017). EGCG has the second highest AGyng of —52.941 kcal/mol
and —54.207 kcal/mol in ABCB1 and CYP3A4, respectively. The
two AGping Values recorded in both CYP3A4 and ABCB1 are
higher than the binding energies calculated for LPV in both
CYP3A4 and ABCB1, which is an indication that EGCG might be

useful as an inhibitor of the two drug-metabolising proteins.
There is little difference in the AGyq of LPV (—44.874) and
K7G (—42.001) in ABCB1 complex; however, in CYP3A4 K7G
(—48.769) binding energy was higher than LPV (—43.299). EGA
and LUT have AGyinq Vvalues far lower than RTV and LPV in
ABCB1 complexes. These binding energy values might suggest
that EGCG and K7G could inhibit the activities of both CYP3A4
and ABCB1 at levels better than LPV. RTV was reported to be a
stronger inhibitor of ABCB1 and CYP3A4 than LPV (moderate
inhibitor); None of the PCs showed binding energies as high as
RTV, however since they display qualities of a moderate inhibi-
tor, their use in ARV therapy to increase plasma concentrations
warrants further investigation.

Protein-ligand interaction with ABCB1 and CYP450 3A4

To further establish the mechanistic inhibitory characteristics of
the four phytochemical compounds, protein-ligand interaction
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Figure 7. Representation of Protein (ABCB1)-ligand interactions plots with different amino acid residues.

plots were assessed. Figure 6 showed the amino acid residues
at the nucleotide binding domain (NBD) of ABCB1 (Figure 6(a))
and the catalylict site of CYP3A4 (Figure 6(b)).

Protein-ligand interaction has been used widely to exam-
ine the molecular interactions between residues at the active
sites of a protein and bound ligands (Chetty et al., 2016;
Idowu et al.,, 2019; Moonsamy et al., 2014; Ndagi et al., 2017).
The effect of the binding of the different ligands on ABCB1
and CYP3A4 was analysed and the interactions between the
critical residues at the binding sites in the presence of the
two known inhibitors (RTV and LPV) and the four tested PCs
was plotted. Figures 7 and 8 not only shows a 2D visualisa-
tion of the interactions between the ligands and the pro-
teins, but also showed different types of interactions
observed in the protein-ligand plots. Interactions such as
hydrogen bond, ionic interaction, m-Sulfur, m-cation inter-
action, and Van der Waals (vdW) overlaps can be observed.

In P-glycoprotein (ABCB1) apo and bound systems (Figure
7), more interactions were observed in RTV (24) than LPV
(22) and the tested PCs (EGA 12, LUT 13, K7G 18 and EGCG
20). This correlates with the highest binding free binding
energy recorded for RTV (Table 1). LPV only showed similar
types of interactions with RTV at amino residues Leul1141,

Val1135, and Lys1134, however there were less number of
interactions in total amino residues in LPV when compare
with RTV, which also correlates with the lower binding
energy recorded for LPV when compared with RTV.

K7G and LUT showed similar type of interactions with LPV
at amino residues Glu868, Val134, Thr1140, Asp130, lle867,
Phe870, Phe129, Hie132, and Asp1137. At residues Cys397,
Leu1142, Ser1143, Gly396, lle375, and Tyr367, EGA showed
similar interactions with RTV. EGCG showed no similarity in
protein-ligand interactions with LPV, however, it showed
some similarity with RTV at amino acid residues Thr367,
GIn1141 and Leu1142, suggesting that EGCG and EGA inhibit
ABCB1 in a related mechanism to RTV.

As shown in Table 1, RTV has the highest free binding
energy, higher than LPV and the four PCs complexes. This is
due to the number and type of interactions between the
individual RTV and the active site amino acids of the CYP3A4
(Figure 8). As shown in the ligand-protein interaction plots,
there is a total of 28 interactive bonds (19 hydrogen and
Van der Waal bonds, 2Pi-cation bonds, 6 Pi-alkyl bonds and
1 Pi-Pi bond) between RTV and the active site amino residues
of CYP3A4. These bonds significantly contributed to its over-
all binding energy.
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Figure 8. Representation of Protein (CYP3A4)-ligand interaction plots with different amino acid residues.

RTV has the highest number of interactions, higher than
EGCG (22 bonds), K7G (18 bonds), LUT (18 bonds) and EGA
(12 bonds). While K7G and LUT showed the same number of
bonds (18 bonds) they showed different binding affinity
(—48.769 kcal/mol and —46.214 kcal/mol, respectively). This
can be attributed to two pi-cation bonds in K7G compared
to one Pi-cation bond in LUT. Similar interactions were
observed at amino acid residues Phe34, Arg82, Phe85,
Arg189, Phe192, Phe281, Ala282, lle346, Met348, Arg349,
Leu350, Glu351, Gly413, Asn418 and Gly458 between LPV
and RTV. The four PCs showed some similarity in term of
interactions with both inhibitors: K7G (Phe34, Arg82, Phe85,
Arg189, Phe192 and Phe281 for LPV and Arg83, Phel90,
Phe218 and Thr286 for RTV), EGCG (Arg82, Phe192, lle346,
Phe34, Phe85, Met348, Arg349, Leu350, Glu351, Gly413,
Asn418 and Gly458 for LPV and Phe34, Arg82, Arg83, Phe85,
Phe192, lle346, Ala347, Met348, Arg349, Leu350, Glu351,
Arg352, Phe412, Gly413, Arg417,

Asn418, Cys419 and Gly458 for RTV). The interaction plot
showed that EGCG has similar type of interactions with RTV
than LPV. This therefore suggests that it could inhibit

CYP3A4 in similar way with RTV. The numbers of interactions
of LUT and EGA with CYP3A4 are lower than that of RTV and
LPV, however, the they showed some similar interactions
(Phe34, Arg82, Arg83, Phe85, Ser96, 11e97, Phe190, Phe192,
Arg349 and Glu351) with the two inhibitors, indicating they
could be moderate inhibitors of CYP3A4.

Conclusion

P-glycoprotein and CYP3A4 have been reported to play
essential roles in controlling plasma concentrations of drugs,
absorption and excretion. The inhibitory potentials of four
phytochemical compounds and their mechanism(s) of inhibit-
ing ABCB1 and CYP3A4 enzymes were examined using a
combination of MD simulation and MM/GBSA free energy
calculations. The MM/GBSA binding free energies showed
that the binding energies (AGy;,,4) of both EGCG and K7G for
the two proteins (ABCB1 and CYP3A4) are higher than LUT
and EGA and fall between the AGyng of the standard inhibi-
tors (RTV and LPV) of both proteins. Structural analysis of the
bound systems and the apo of the two proteins also
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confirmed that the binding of the compounds (EGCG and
K7G) at the active sites of the two proteins does not alter
the structural integrity of the proteins. The results further
showed that there are similar interactions between the drugs
and the compounds, suggesting potential inhibitory similar-
ities between the drugs and compounds. This study, there-
fore, suggests that EGCG, EGA and K7G showed more
similarity with RTV in their interaction with CYP3A4, and K7G
and EGCG showed similar interactions with LPV and RTV
respectively in P-glycoprotein systems, thereby suggesting
that EGCG and K7G might be a suitable substitute for RTV in
its use as a booster for HIV protease drugs where it is known
to increase the optimal concentration of Pls in the systemic
circulation by inhibiting the pumping out and the rate of
metabolism of Pls from the circulating system thereby,
enhancing the therapeutic effect of the Pl drugs.
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