• Login
    View Item 
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Mechanical Engineering
    • Doctoral Degrees (Mechanical Engineering)
    • View Item
    •   ResearchSpace Home
    • College of Agriculture, Engineering and Science
    • School of Engineering
    • Mechanical Engineering
    • Doctoral Degrees (Mechanical Engineering)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and performance simulation of a hybrid sounding rocket.

    Thumbnail
    View/Open
    Thesis. (9.313Mb)
    Date
    2012
    Author
    Chowdhury, Seffat Mohammad.
    Metadata
    Show full item record
    Abstract
    Sounding rockets find applications in multiple fields of scientific research including meteorology, astronomy and microgravity. Indigenous sounding rocket technologies are absent on the African continent despite a potential market in the local aerospace industries. The UKZN Phoenix Sounding Rocket Programme was initiated to fill this void by developing inexpensive medium altitude sounding rocket modeling, design and manufacturing capacities. This dissertation describes the development of the Hybrid Rocket Performance Simulator (HYROPS) software tool and its application towards the structural design of the reusable, 10 km apogee capable Phoenix-1A hybrid sounding rocket, as part of the UKZN Phoenix programme. HYROPS is an integrated 6–Degree of Freedom (6-DOF) flight performance predictor for atmospheric and near-Earth spaceflight, geared towards single-staged and multi-staged hybrid sounding rockets. HYROPS is based on a generic kinematics and Newtonian dynamics core. Integrated with these are numerical methods for solving differential equations, Monte Carlo uncertainty modeling, genetic-algorithm driven design optimization, analytical vehicle structural modeling, a spherical, rotating geodetic model and a standard atmospheric model, forming a software framework for sounding rocket optimization and flight performance prediction. This framework was implemented within a graphical user interface, aiming for rapid input of model parameters, intuitive results visualization and efficient data handling. The HYROPS software was validated using flight data from various existing sounding rocket configurations and found satisfactory over a range of input conditions. An iterative process was employed in the aerostructural design of the 1 kg payload capable Phoenix-1A vehicle and CFD and FEA numerical techniques were used to verify its aerodynamic and thermo-structural performance. The design and integration of the Phoenix-1A‟s hybrid power-plant and onboard electromechanical systems for recovery parachute deployment and motor oxidizer flow control are also discussed. It was noted that use of HYROPS in the design loop led to improved materials selection and vehicle structural design processes. It was also found that a combination of suitable mathematical techniques, design know-how, human-interaction and numerical computational power are effective in overcoming the many coupled technical challenges present in the engineering of hybrid sounding rockets.
    URI
    http://hdl.handle.net/10413/9115
    Collections
    • Doctoral Degrees (Mechanical Engineering) [51]

    Related items

    Showing items related by title, author, creator and subject.

    • Numerical simulation of the structural response of a composite rocket nozzle during the ignition transient. 

      Pitot de la Beaujardiere, Jean-Francois Philippe. (2009)
      The following dissertation describes an investigation of the structural response behaviour of a composite solid rocket motor nozzle subjected to thermal and pressure loading during the motor ignition period, derived on ...
    • The hydrodynamic design and analysis of a liquid oxygen pump impeller for a rocket engine. 

      Singh, Nalendran. (2018)
      The deployment of micro- and nanosatellites has greatly increased over the past few decades with advances in miniaturized electronics for communication, imaging and attitude control. The South African satellite industry ...
    • Closed-loop throttle control of a hybrid rocket motor. 

      Velthuysen, Timothy Johnathan. (2018)
      Hybrid rocket motors produce thrust by reacting a solid fuel with a liquid oxidizer inside a combustion chamber. This approach has certain advantages over conventional solid propellant rockets including improved safety and ...

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of ResearchSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsType

    My Account

    LoginRegister

    DSpace software copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
    Theme by 
    @mire NV